Propeller Arm Control System Planning for Flying Electric Vehicles
DOI:
https://doi.org/10.70822/journalofevrmata.v3i01.54Keywords:
flying electric vehicle, control system, propellerAbstract
This research aims to design and develop a propeller arm control system for a flying electric vehicle. With the increasing need for efficient and environmentally friendly vehicles, this research focuses on control mechanisms that can improve vehicle maneuverability and speed performance. The research methods used include design planning, making motor mounts, and setting up the control system using the FLYSKY FS-i6 remote control and Lithium Iron Phosphate (LiFePo4) batteries. The results of the research show that the designed propeller arm control system can function well, providing a fast and accurate response to commands from the remote control. This research is expected to make a significant contribution to the development of flying electric vehicle technology, as well as opening up opportunities for further research in the field of automotive electronics.
References
D. Kim, Y. Lee, S. Oh, Y. Park, J. Choi, and D. Park, “Aerodynamic analysis and static stability analysis of Manned/unmanned distributed propulsion aircrafts using actuator methods,” J. Wind Eng. Ind. Aerodyn., vol. 214, p. 104648, 2021, doi: 10.1016/j.jweia.2021.104648.
A. Cherubini, A. Papini, R. Vertechy, and M. Fontana, “Airborne Wind Energy Systems: A review of the technologies,” Renew. Sustain. Energy Rev., vol. 51, pp. 1461–1476, 2015, doi: 10.1016/j.rser.2015.07.053.
D. McNulty, A. Hennessy, M. Li, E. Armstrong, and K. M. Ryan, “A review of Li-ion batteries for autonomous mobile robots: Perspectives and outlook for the future,” J. Power Sources, vol. 545, no. May, p. 231943, 2022, doi: 10.1016/j.jpowsour.2022.231943.
E. Lunney, M. Ban, N. Duic, and A. Foley, “A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland,” Renew. Sustain. Energy Rev., vol. 68, pp. 899–911, 2017, doi: 10.1016/j.rser.2016.08.014.
S. Bagarello, D. Campagna, and I. Benedetti, “A survey on hydrogen tanks for sustainable aviation,” Green Energy Intell. Transp., p. 100224, 2024, doi: 10.1016/j.geits.2024.100224.
S. Xiang et al., “Autonomous eVTOL: A summary of researches and challenges,” Green Energy Intell. Transp., vol. 3, no. 1, p. 100140, 2024, doi: 10.1016/j.geits.2023.100140.
G. Rohi, O. Ejofodomi, and G. Ofualagba, “Autonomous monitoring, analysis, and countering of air pollution using environmental drones,” Heliyon, vol. 6, no. 1, p. e03252, 2020, doi: 10.1016/j.heliyon.2020.e03252.
M. Mammarella, L. Comba, A. Biglia, F. Dabbene, and P. Gay, “Cooperation of unmanned systems for agricultural applications: A theoretical framework,” Biosyst. Eng., vol. 223, pp. 61–80, 2022, doi: 10.1016/j.biosystemseng.2021.11.008.
X. Zhou, H. Zhong, H. Zhang, W. He, H. Hua, and Y. Wang, “Current Status, Challenges, and Prospects for New Types of Aerial Robots,” Engineering, vol. 41, pp. 19–34, 2024, doi: 10.1016/j.eng.2024.05.008.
Ö. Dündar, M. Bilici, and T. Ünler, “Design and performance analyses of a fixed wing battery VTOL UAV,” Eng. Sci. Technol. an Int. J., vol. 23, no. 5, pp. 1182–1193, 2020, doi: 10.1016/j.jestch.2020.02.002.
J. P. Veeraperumal Senthil Nathan et al., “Development of VTOL-configured unmanned aquatic vehicle for underwater welding applications: An innovative design and multi-perspective computational investigations,” Results Eng., vol. 25, no. November 2024, p. 103740, 2025, doi: 10.1016/j.rineng.2024.103740.
S. Jane Fox, “Drones: Foreseeing a ‘risky’ business?Policing the challenge that flies above,” Technol. Soc., vol. 71, no. May, p. 102089, 2022, doi: 10.1016/j.techsoc.2022.102089.
T. Kosmal et al., “Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems - A case study of drone fabrication,” Addit. Manuf. Lett., vol. 3, no. September, p. 100100, 2022, doi: 10.1016/j.addlet.2022.100100.
M. Osman and Y. Xia, “Hybrid VTOL UAV technologies : Efficiency , customization , and sector-specific applications,” Alexandria Eng. J., vol. 120, no. January 2024, pp. 13–49, 2025, doi: 10.1016/j.aej.2024.12.087.
U. Kaur et al., “Smart Agricultural Technology Indwelling robots for ruminant health monitoring : A review of elements,” Smart Agric. Technol., vol. 3, no. May 2022, p. 100109, 2023, doi: 10.1016/j.atech.2022.100109.
A. Maran et al., “Results in Engineering Innovative Design and Aerodynamic Performance Investigation of Converged-Divergent Ducted Horizontal Axis Wind Turbine on a Car Roof through Computational Fluid Dynamics Approach,” Results Eng., vol. 27, no. June, p. 105623, 2025, doi: 10.1016/j.rineng.2025.105623.
N. Sethi and S. Ahlawat, “Low-fidelity design optimization and development of a VTOL swarm UAV with an open-source framework,” Array, vol. 14, no. May, p. 100183, 2022, doi: 10.1016/j.array.2022.100183.
S. M. E. North et al., “ScienceDirect ScienceDirect ScienceDirect ScienceDirect Manufacturing and and Society Society – – A A Freshman Freshman Introduction Introduction to to Engineering Engineering Manufacturing Manufacturing and Society – A Freshman Introduction to Engineering Course with with Manufacturing Manufacturing and and Social Social Science Science Partnership Partnership Course Course with Manufacturing and Social Science Partnership,” Procedia Manuf., vol. 48, pp. 1126–1135, 2020, doi: 10.1016/j.promfg.2020.05.154.
D. Aláez, X. Olaz, M. Prieto, J. Villadangos, and J. J. Astrain, “Simulation Modelling Practice and Theory VTOL UAV digital twin for take-off , hovering and landing in different wind conditions ✩,” Simul. Model. Pract. Theory, vol. 123, no. November 2022, p. 102703, 2023, doi: 10.1016/j.simpat.2022.102703.
N. Michel, P. Wei, Z. Kong, A. Kumar, and X. Lin, “Modeling and validation of electric multirotor unmanned aerial vehicle system energy dynamics,” eTransportation, vol. 12, p. 100173, 2022, doi: 10.1016/j.etran.2022.100173.
S. Bennaceur and N. Azouz, “Modelling and control of a quadrotor with flexible arms,” Alexandria Eng. J., vol. 65, pp. 209–231, 2023, doi: 10.1016/j.aej.2022.10.027.
M. Deja, M. S. Siemiątkowski, G. Vosniakos, and G. Maltezos, “ScienceDirect ScienceDirect Opportunities and challenges for exploiting drones in agile manufacturing systems,” Procedia Manuf., vol. 51, no. 2019, pp. 527–534, 2021, doi: 10.1016/j.promfg.2020.10.074.
A. Müller, “Paul de Casteljau : The story of my adventure ✩ From an autobiographical letter,” Comput. Aided Geom. Des., vol. 110, no. November 1997, p. 102278, 2024, doi: 10.1016/j.cagd.2024.102278.
K. Anoune et al., “Performance enhancement of drone LiB state of charge using extended Kalman filter algorithm,” Clean. Eng. Technol., vol. 25, no. February, p. 100917, 2025, doi: 10.1016/j.clet.2025.100917.
D. T. Connor et al., “Radiological comparison of a FDNPP waste storage site during and after construction *,” Environ. Pollut., vol. 243, pp. 582–590, 2018, doi: 10.1016/j.envpol.2018.08.099.
H. Alberto and L. Fernando, “Reconfigurable agricultural robotics : Control strategies , communication , and applications,” Comput. Electron. Agric., vol. 234, no. November 2024, p. 110161, 2025, doi: 10.1016/j.compag.2025.110161.
G. Yao et al., “Progress in Aerospace Sciences Review of hybrid aquatic-aerial vehicle ( HAAV ): Classifications , current status , applications , challenges and technology perspectives,” Prog. Aerosp. Sci., vol. 139, no. January, p. 100902, 2023, doi: 10.1016/j.paerosci.2023.100902.
Y. Xie, A. Savvarisal, A. Tsourdos, and D. Zhang, “Review of hybrid electric powered aircraft , its conceptual design and energy management methodologies,” Chinese J. Aeronaut., vol. 34, no. 4, pp. 432–450, 2021, doi: 10.1016/j.cja.2020.07.017
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Ainul Mafazi, Sugeng Hadi Susilo

This work is licensed under a Creative Commons Attribution 4.0 International License.