Design for BLDC Motor Control System in Flying Electric Vehicle
DOI:
https://doi.org/10.70822/journalofevrmata.v3i01.52Keywords:
BLDC motor, electric vehicle, control system, motor control design, electric drive system, energy efficiencyAbstract
The choice of control system for a flying electric vehicle/quadcopter is very important, especially for users who have never built or driven a flying electric vehicle. Electrical components which include the flight controller, ESC, battery, BLDC motor and other components have an influence in planning electric flying vehicles. Therefore, a BLDC motor control system is needed so that it can operate according to wishes and needs. The purpose of this research is to find out how the control system wiring diagram works, which includes the flight controller wiring diagram as the main flight control and the Electronic Speed Control (ESC) wiring diagram as the BLDC motor speed controller. The choice of flight controller to operate the electric vehicle flight uses DJI Naza M V2 and electronic speed control uses a flier with a 3s-20s cell count configuration.
References
F. Basana and F. Branz, “Simulation of robotic space operations with minimum base reaction manipulator,” J. Sp. Saf. Eng., vol. 9, no. 3, pp. 440–448, 2022, doi: 10.1016/j.jsse.2022.06.005.
M. Muenchhof, M. Beck, and R. Isermann, Fault Tolerant Actuators and Drives – Structures, Fault Detection Principles and Applications, vol. 42, no. 8. IFAC, 2009. doi: 10.3182/20090630-4-es-2003.00211.
Y. Vijaya Sambhavi and V. Ramachandran, “A technical review of modern traction inverter systems used in electric vehicle application,” Energy Reports, vol. 10, no. October, pp. 3882–3907, 2023, doi: 10.1016/j.egyr.2023.10.056.
V. R. Nippatla and S. Mandava, “Results in Engineering Performance analysis of permanent magnet synchronous motor based on transfer function model using PID controller tuned by Ziegler-Nichols method,” Results Eng., vol. 26, no. May, p. 105460, 2025, doi: 10.1016/j.rineng.2025.105460.
T. L. Grigorie, S. Khan, R. M. Botez, M. Mamou, and Y. Mebarki, “Design and experimental testing of a control system for morphing wing model actuated with miniature BLDC motors.pdf,” Chinese J. o Aeronaut., vol. 33, no. 4, pp. 1272–1287, 2020, doi: 10.106/j.cja.2019.08.007.
R. Baz, K. El Majdoub, F. Giri, and O. Ammari, “Fine-Tuning Quarter Vehicle Performance: PSO-Optimized Fuzzy PID Controller for In-Wheel BLDC Motor Systems,” IFAC-PapersOnLine, vol. 58, no. 13, pp. 715–720, 2024, doi: 10.1016/j.ifacol.2024.07.566.
T. L. GRIGORIE, S. KHAN, R. M. BOTEZ, M. MAMOU, and Y. MÉBARKI, “Design and experimental testing of a control system for a morphing wing model actuated with miniature BLDC motors,” Chinese J. Aeronaut., vol. 33, no. 4, pp. 1272–1287, 2020, doi: 10.1016/j.cja.2019.08.007.
N. Michel, P. Wei, Z. Kong, A. K. Sinha, and X. Lin, “Modeling and validation of electric multirotor unmanned aerial vehicle system energy dynamics,” eTransportation, vol. 12, p. 100173, 2022, doi: 10.1016/j.etran.2022.100173.
Á. Fehér, S. Aradi, T. Bécs, and P. Gáspár, “Highly Automated Electric Vehicle Platform for Control Education,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 17296–17301, 2020, doi: 10.1016/j.ifacol.2020.12.1809.
M. D. Pavel, “Understanding the control characteristics of electric vertical take-off and landing (eVTOL) aircraft for urban air mobility,” Aerosp. Sci. Technol., vol. 125, p. 107143, 2022, doi: 10.1016/j.ast.2021.107143.
G. R. Bhat et al., “Autonomous drones and their influence on standardization of rules and regulations for operating–A brief overview,” Results Control Optim., vol. 14, no. February, p. 100401, 2024, doi: 10.1016/j.rico.2024.100401.
T. de J. Mateo Sanguino and J. M. Lozano Domínguez, “Design and stabilization of a Coandă effect-based UAV: Comparative study between fuzzy logic and PID control approaches,” Rob. Auton. Syst., vol. 175, no. January, pp. 1–14, 2024, doi: 10.1016/j.robot.2024.104662.
E. Özbek, G. Yalin, S. Ekici, and T. H. Karakoc, “Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV,” Energy, vol. 213, 2020, doi: 10.1016/j.energy.2020.118757.
R. M. Abdulhakeem, A. Kircay, and R. K. Antar, “Design an asymmetrical 49-level inverter fed by battery and PV energy sources,” Case Stud. Therm. Eng., vol. 70, no. March, p. 106080, 2025, doi: 10.1016/j.csite.2025.106080.
N. Sethi and S. Ahlawat, “Low-fidelity design optimization and development of a VTOL swarm UAV with an open-source framework,” Array, vol. 14, no. May, p. 100183, 2022, doi: 10.1016/j.array.2022.100183.
J. Gebauer, R. Wagnerová, P. Smutný, and P. Podešva, “Controller design for variable pitch propeller propulsion drive,” IFAC-PapersOnLine, vol. 52, no. 27, pp. 186–191, 2019, doi: 10.1016/j.ifacol.2019.12.754.
A. K. Abdelaal, A. M. Shaheen, A. A. El-Fergany, and M. H. Alqahtani, “Sliding mode control based dynamic voltage restorer for voltage sag compensation,” Results Eng., vol. 24, no. July, p. 102936, 2024, doi: 10.1016/j.rineng.2024.102936.
U. R. Mogili and B. B. V. L. Deepak, “Review on Application of Drone Systems in Precision Agriculture,” Procedia Comput. Sci., vol. 133, pp. 502–509, 2018, doi: 10.1016/j.procs.2018.07.063.
D. Lim, H. Kim, and K. Yee, “Uncertainty propagation in flight performance of multirotor with parametric and model uncertainties,” Aerosp. Sci. Technol., vol. 122, p. 107398, 2022, doi: 10.1016/j.ast.2022.107398.
P. E. Kamalakkannan, B. Vinoth kumar, and M. Kalamani, “Optimal nonlinear Fractional-Order Proportional-Integral-Derivative controller design using a novel hybrid atom search optimization for nonlinear Continuously stirred Tank reactor,” Therm. Sci. Eng. Prog., vol. 54, no. August, p. 102862, 2024, doi: 10.1016/j.tsep.2024.102862.
P. Lipovský, J. Novotnák, and J. Blažek, “Possible Utilization of Low Frequency Magnetic Fields in Short Range Multirotor UAV Detection System,” Transp. Res. Procedia, vol. 65, no. C, pp. 106–115, 2022, doi: 10.1016/j.trpro.2022.11.013.
X. YAN, Y. YUAN, Y. ZHAO, and R. CHEN, “Rotor cross-tilt optimization for yaw control improvement of multi-rotor eVTOL aircraft,” Chinese J. Aeronaut., vol. 37, no. 3, pp. 153–167, 2024, doi: 10.1016/j.cja.2023.09.016.
H. Gajjar, S. Sanyal, and M. Shah, “A comprehensive study on lane detecting autonomous car using computer vision,” Expert Syst. Appl., vol. 233, no. October 2021, p. 120929, 2023, doi: 10.1016/j.eswa.2023.120929.
D. Hyun, J. Han, and S. Hong, “Development of hybrid-powered, sustainable multi-purpose drone system: An analysis model,” Int. J. Hydrogen Energy, vol. 61, no. March, pp. 762–773, 2024, doi: 10.1016/j.ijhydene.2024.02.251.
G. Calderone, M. V. Ferro, and P. Catania, “A systematic literature review on recent unmanned aerial spraying systems applications in orchards,” Smart Agric. Technol., vol. 10, no. December 2024, p. 100708, 2025, doi: 10.1016/j.atech.2024.100708.
M. Osman, Y. Xia, M. Mahdi, and A. Ahmed, “Hybrid VTOL UAV technologies: Efficiency, customization, and sector-specific applications,” Alexandria Eng. J., vol. 120, no. January 2024, pp. 13–49, 2025, doi: 10.1016/j.aej.2024.12.087.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Nurus Syamsi, Sugeng Hadi Susilo

This work is licensed under a Creative Commons Attribution 4.0 International License.