Analysis of the Fin Incline Angle on Aerodynamic Stability of 60 mm Caliber Komando Asap Mortgarena Using Computational Fluid Dynamics Simulation Method
DOI:
https://doi.org/10.70822/evrmata.vi.75Keywords:
CFD simulation, Training Weapon Grenade, aerodynamics, drag coefficient, flight stability.Abstract
This study aims to analyze and simulate the aerodynamic performance of the design of a training weapon grenade using the Computational Fluid Dynamics (CFD) method. CFD simulation allows the analysis of airflow around the grenade to identify the distribution of pressure, drag, and aerodynamic coefficients that play an important role in the efficiency of the grenade flight. The grenade design was tested under various conditions of speed and fin angle to understand their effects on stability and flight efficiency. The results of the simulation show that the variation of the mortar grenade with the fin position parallel to the launch angle has a fluid flow velocity of 84.1 m / s, the mortar grenade with the fin position tilted 2.5 has a fluid flow velocity of 82.7 m / s, and the mortar grenade with the fin position tilted 5 has a fluid flow velocity of 85.8 m / s from the data obtained, the inclination of the fin angle significantly affects the aerodynamic performance of the mortar grenade. This study provides insight that shifting the fin angle on the grenade can increase stability and minimize air resistance during flight.
References
L. Muller, M. Libsig, B. Martinez, D. Bidino, M. Bastide, Y. Bailly, and J.-C. Roy, "Numerical and Experimental Investigation of A Three-Axis Free Rotation Wind Tunnel Model," arXiv preprint arXiv:2305.08578, 2023. [Online]. Available: https://arxiv.org/abs/2305.08578.
L. Muller and M. Libsig, "Design of a Freely Rotating Wind Tunnel Test Bench for Measurements of Dynamic Coefficients," arXiv preprint arXiv:2309.05302, 2023. [Online]. Available: https://arxiv.org/abs/2309.05302.
E. Kang, "Prediction of Aerodynamic Stability Derivatives of Shell Configuration of Missile Using CFD Method," J. Korean Inst. Mil. Sci. Technol., vol. 23, no. 4, pp. 363-370, 2020.
S. H. Lee, J. H. Lee, and K. W. Kim, "Numerical Investigation of Supersonic Lateral Jet Interaction for Subsonic Projectiles with Different Fins at Large Angle of Attack," Aerosp. Sci. Technol., vol. 111, 2021. [Online]. Available: https://doi.org/10.1016/j.ast.2021.106603.
R. Kalvin, J. Taweekun, M. W. Mustafa, and S. Arif, "Aerodynamics Analysis and Range Enhancement Study of 81mm Mortar Shell (French Design)," Semarak Ilmu J., vol. 23, pp. 143-152, 2024. [Online]. Available: https://semarakilmu.com.my.
A. A. Imron, A. S. Widodo, and A. Purnowidodo, "Analisa Pengaruh Aerodinamika pada Margin Stabilitas Mortir Latih 81 mm dengan Sistem Kompresi Udara," Rekayasa Mesin, vol. 13, no. 4, pp. 78-85, 2022. [Online]. Available: https://rekayasamesin.ub.ac.id.
D. R. Berliet, "Analisis Aerodinamika Folding Fin Aerial Rocket 70 mm pada Aliran Incompressible Menggunakan SimScale Berbasis CFD," STTKD Library, 2023. [Online]. Available: https://digilib.sttkd.ac.id.
M. Smith and A. Green, "CFD Modeling of Grid Fin Missile Aerodynamics," High Perform. Comput., vol. 34, pp. 202-210, 2023. [Online]. Available: https://hpc.mil.
H. Zuo, Y. Huang, and L. Zhang, "Numerical Study on Aerodynamic Characteristics of Tail-stabilized Projectiles with Diversion Groove," J. Fluid Mech., vol. 789, pp. 34-45, 2022. [Online]. Available: https://jfm.damtp.cam.ac.uk.
T. Lee, M. Kim, and J. Park, "Aerodynamic Performance of Guided Mortar Munition with Tail Fins," IEEE Aerosp. Electron. Syst. Mag., vol. 32, no. 5, pp. 78-89, 2022. [Online]. Available: https://ieeexplore.ieee.org.
L. Lazuardi, M. Akhlis Rizza, S. H. Susilo, and M. Maryono, “ANALYSIS OF 3D PRINTING APPLICATIONS WITH ABS FILAMENT MATERIAL FOR DESIGNING UNMANNED AIRCRAFT BODYBUILS Article Information ABSTRACT,” Journal of Mechanical Engineering, vol. 01, no. 01, pp. 25–32, 2024
B. Davis, "Enhancing Mortar Range Through Aerodynamic Fins," Mil. Sci. Rev., vol. 18, no. 2, pp. 56-67, 2022.
A. H. Johnson, "Impact of Fin Configuration on Mortar Stability," IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 3, pp. 210-222, 2021.
M. T. Eberhart and K. W. Braun, "Stability Analysis of Mortar Grenades Using CFD," J. Defense Sci., vol. 15, no. 4, pp. 98-110, 2020.
F. C. Wong and D. R. Lin, "CFD Simulations of Subsonic Mortar Flights," J. Aerosp. Eng., vol. 14, no. 3, pp. 120-134, 2023.
S. I. Jung, "Dynamic Modeling of Guided Mortars with Tail Fins," IEEE Int. Conf. Robot. Autom., 2022. [Online]. Available: https://ieeexplore.ieee.org.
R. P. Gupta and S. Mehra, "Mortar Aerodynamics with Enhanced Fin Angles," J. Phys. Conf. Ser., vol. 56, pp. 112-118, 2021. [Online]. Available: https://doi.org/10.1088/1742-6596.
C. Brown and E. Hall, "Impact of Airflow Separation on Mortar Stability," AIAA J., vol. 35, no. 6, pp. 45-55, 2022.
Y. Chang, "Optimizing Aerodynamic Stability of Mortars Using Adaptive Fins," IEEE Aerosp. Conf., 2023. [Online]. Available: https://ieeexplore.ieee.org.
M. Akhter and R. Saeed, "CFD Analysis of Mortar Flight Dynamics," Arabian J. Sci. Eng., vol. 46, pp. 450-460, 2022.
P. Zhang and Q. Chen, "Modeling Supersonic Flows Around Mortars Using CFD," J. Comput. Phys., vol. 400, pp. 100-112, 2022.
K. Lee, "Development of a Tail-Fin Mortar Design for Improved Stability," IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 2, pp. 189-201, 2023.
R. Kumar, "Aerodynamic Simulation of Mortars at High Angles of Attack," Proc. IEEE Nat. Aerosp. Conf., 2021. [Online]. Available: https://ieeexplore.ieee.org.
L. K. Mathews, "Analysis of Fin Angles for Enhanced Mortar Performance," Defense Technol. J., vol. 8, no. 4, pp. 77-88, 2020.
T. S. Nguyen and Y. Chen, "High-Fidelity CFD Simulations for Mortar Dynamics," IEEE Trans. Fluid Dyn., vol. 12, pp. 234-245, 2021.
S. Ramachandran, "Drag Reduction in Mortars Through Optimized Fin Design," J. Propuls. Power, vol. 37, no. 5, pp. 133-144, 2022.
X. Zhou, "Advanced Computational Techniques for Mortar Aerodynamics," IEEE Aerosp. Conf., 2023. [Online]. Available: https://ieeexplore.ieee.org.
J. P. Smith and A. Clark, "Optimization of Fin Geometry Using Machine Learning," IEEE Int. Conf. Mechatron. Syst., 2022. [Online]. Available: https://ieeexplore.ieee.org.
T. R. Martin, "Analysis of Supersonic Mortar Dynamics," J. Aerosp. Eng., vol. 40, no. 3, pp. 89-101, 2022.
M. Wilkins, "Enhancing Mortar Stability Through Computational Analysis," J. Defense Sci., vol. 16, no. 1, pp. 77-88, 2021.
M. D. Ma'mun, "Analisa Pengaruh Twist pada Gaya Aerodinamik Propeller Quadcopter dengan Menggunakan Computational Fluid Dynamics," INDEPT: Jurnal Industri, Elektro dan Penerbangan, vol. 11, no. 1, 2022.
G. Yudho, B. Nasution, Y. H. Yogaswara, S. Jengkar, dan Handoko, "Analisis Karakteristik Aerodinamika dari Berbagai Geometri Fin Bom 500 lbs dengan Metode Computational Fluid Dynamics (CFD)," Jurnal TNI Angkatan Udara, vol. 1, no. 2, 2022.
J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications, New York: McGraw-Hill, 1995.
H. K. Versteeg dan W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Harlow, UK: Pearson, 2007.
J. Tu, G. H. Yeoh, dan C. Liu, Computational Fluid Dynamics: A Practical Approach, 2nd ed., Oxford, UK: Butterworth-Heinemann, 2012.
D. Carlucci dan S. Jacobson, Ballistics: Theory and Design of Guns and Ammunition, 3rd ed., Boca Raton, FL: CRC Press, 2018.
N. Achara, et al., "Aerodynamic Characterisation of Rocket Fin Flutter Using Computational Fluid Dynamics," World Journal of Innovative Research, vol. 5, Aug. 2018.
J. T. Bryson, et al., "Approach for Understanding Range Extension of Gliding Indirect Fire Ammunitions," AIAA Journal, vol. 56, no. 6, pp. 2358–2369, Jun. 2018.
D. Yang, et al., "Nutation Instability of Spinning Solid Rocket Motor Spacecraft," Chinese Journal of Aeronautics, vol. 30, no. 4, pp. 1363–1372, Aug. 2017.
A. Garcia dan G. Silveira, "Proposal of Static Margin Limit during Launch Phase for the VS-30 Orion Sounding Rocket," SAE Technical Paper, 2015.



