Sustainable Power Generation through Dual-Axis Solar Tracking for Off Grid 100Wp Photovoltaic Systems

Authors

  • Widjanarko State Polytechnic of Malang
  • Nila Alia State Polytechnic of Malang
  • Fengky Adie Perdana State Polytechnic of Malang
  • Pondi Udianto
  • Etik Puspitasari State Polytechnic of Malang

DOI:

https://doi.org/10.70822/evrmata.v1i04.63

Keywords:

Dual-Axis Solar Tracking, Off-Grid, Energy Efficiency, Sustainable Power Generation, Renewable Energy

Abstract

This study investigates the development and implementation of a dual-axis solar tracking system for off-grid 100Wp photovoltaic (PV) systems to enhance energy harvesting efficiency and ensure sustainable power generation. The research addresses the limitations of fixed-tilt PV systems, which often underperform due to suboptimal solar alignment, especially in regions with dynamic weather conditions. The results demonstrated a significant increase in energy output, achieving up to 13,75% higher efficiency compared to static systems under similar operational conditions. This improvement is attributed to the system's ability to maintain optimal solar panel orientation throughout the day, facilitated by an advanced tracking algorithm and real-time sensor integration. The distinctive features of the developed system include its cost-effective design, adaptability to various geographical locations, and robust performance under fluctuating environmental conditions. The findings suggest that the dual-axis tracking system is wellsuited for deployment in remote or off-grid areas where reliable and efficient power generation is critical. Practical applications of this system are particularly relevant for rural electrification, agricultural irrigation systems, and other decentralized energy solutions in regions with abundant solar resources.

References

T. M. Y. Khan and E. Jassim, “Solar Thermal Systems , and the Dawn of Energy,” pp. 1–30, 2023.

N. Novas, R. M. Garcia, J. M. Camacho, and A. Alcayde, Advances in solar energy towards efficient and sustainable energy, vol. 13, no. 11. 2021. doi: 10.3390/su13116295.

K. Obaideen et al., “Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs),” Sustain., vol. 15, no. 2, 2023, doi: 10.3390/su15021418.

E. Puspitasari, E. Yudiyanto, L. Agustriyana, and N. Alia, “Small PLTS Off Grid 240 WP On Residential House Rooftop,” EvrimataJournal Mech. Eng., vol. 01, no. 03, pp. 81–87, 2024.

K. Kumba, P. Upender, P. Buduma, M. Sarkar, S. P. Simon, and V. Gundu, “Solar tracking systems: Advancements, challenges, and future directions: A review,” Energy Reports, vol. 12, no. August, pp. 3566–3583, 2024, doi: 10.1016/j.egyr.2024.09.038.

W. Widjanarko, N. Alia, A. Dani, and F. A. Perdana, “Experimental analysis of temperature, light intensity, and humidity on rooftop standalone solar power plant,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1073, no. 1, p. 012047, 2021, doi: 10.1088/1757-899x/1073/1/012047.

A. Musa, E. Alozie, S. A. Suleiman, J. A. Ojo, and A. L. Imoize, “A Review of Time-Based Solar Photovoltaic Tracking Systems,” Inf., vol. 14, no. 4, 2023, doi: 10.3390/info14040211.

Ezenwobodo and S. Samuel, “International Journal of Research Publication and Reviews,” Int. J. Res. Publ. Rev., vol. 04, no. 01, pp. 1806–1812, 2022, doi: 10.55248/gengpi.2023.4149.

R. Hassan and B. Abubakar, “Intelligent Arduino Based Automatic Solar Tracking System Using Light Dependent Resistors (LDRs) and Servo Motor,” Optics, vol. 9, no. 2, p. 13, 2020, doi: 10.11648/j.optics.20200902.11.

S. Kyi and A. Taparugssanagorn, “Wireless Sensing for a Solar Power System,” Digit. Commun. Networks, vol. 6, no. 1, pp. 51–57, 2019, doi: 10.1016/j.dcan.2018.11.002.

A. Rahman, S. Sarker, A. Habib, and A. Al, “PC Based wireless remote monitoring system for photovoltaic ( PV ) panel efficiency analysis American Journal of Engineering Research ( AJER ) PC Based wireless remote monitoring system for photovoltaic ( PV ) panel efficiency analysis,” no. August, pp. 111–117, 2019.

W. Lu and P. Ajay, “Solar PV tracking system using arithmetic optimization with dual axis and sensor,” Meas. Sensors, vol. 33, no. March, p. 101089, 2024, doi: 10.1016/j.measen.2024.101089.

I. Factors and M. Techniques, “Performance , Influencing Factors , and Mitigation Techniques,” Eneriges, vol. 15, no. 7595, 2022.

M. N. A. Mohd Said, S. A. Jumaat, and C. R. A. Jawa, “Dual axis solar tracker with iot monitoring system using arduino,” Int. J. Power Electron. Drive Syst., vol. 11, no. 1, pp. 451–458, 2020, doi: 10.11591/ijpeds.v11.i1.pp451-458.

N. Kuttybay, A. Saymbetov, S. Mekhilef, and M. Nurgaliyev, “Optimized Single-Axis Schedule Solar Tracker,” Energies, vol. 13, no. 5226, pp. 1–18, 2020.

M. Duzenli, G. Kocar, and A. Eryasar, “a Review of Floating Solar Power Plants,” From Sci. Ed., pp. 281–288, 2018.

M. Angulo-Calderón, I. Salgado-Tránsito, I. Trejo-Zúñiga, C. Paredes-Orta, S. Kesthkar, and A. Díaz-Ponce, “Development and Accuracy Assessment of a High-Precision Dual-Axis Pre-Commercial Solar Tracker for Concentrating Photovoltaic Modules,” Appl. Sci., vol. 12, no. 5, pp. 1–21, 2022, doi: 10.3390/app12052625.

K. S. Gaeid, M. N. Uddin, M. K. Mohamed, and O. N. Mohmmoud, “Design and Implement of Dual Axis Solar Tracker System Based Arduino,” Tikrit J. Eng. Sci., vol. 27, no. 2, pp. 71–81, 2020, doi: 10.25130/tjes.27.2.09.

A. Mohamad, M. T. A. Rahman, K. Phasinam, M. S. bin Mohamad, M. A. M. Saad, and S. Y. Chionh, “Analysis of an Arduino based solar tracking system,” J. Phys. Conf. Ser., vol. 2051, no. 1, 2021, doi: 10.1088/1742-6596/2051/1/012011.

G. Varshney, U. Mittal, M. P. Kishore, and U. Saxena, “Design, implementation and performance assessment of a low-cost dual-axis solar tracker,” J. Phys. Conf. Ser., vol. 2570, no. 1, pp. 0–10, 2023, doi: 10.1088/1742-6596/2570/1/012005.

M. Alif Ismail, K. A. Ramanathan, M. Hafizi Idris, K. Ananda-Rao, M. Mazlan, and N. Fairuz, “Improving the performance of solar panels by the used of dual axis solar tracking system with mirror reflection,” J. Phys. Conf. Ser., vol. 1432, no. 1, pp. 0–7, 2020, doi: 10.1088/1742-6596/1432/1/012060.

S. El Himer, M. Ouaissa, M. Ouaissa, M. Krichen, M. Alswailim, and M. Almutiq, “Energy Consumption Monitoring System Based on IoT for Residential Rooftops,” Computation, vol. 11, no. 4, 2023, doi: 10.3390/computation11040078.

Z. Abidin, W. M. Faizal, H. Amri, N. Budiyanto, and A. Azizul, IoT-Based Monitoring Of Voltage, Current And Power Of Solar Panel Units, vol. 2023. Atlantis Press International BV, 2024. doi: 10.2991/978-94-6463-364-1_87.

A. R. Kalaiarasi, A. C. V. Devi, V. Yeshwanth, S. Pravinraj, and M. Prabakaran, “Internet of things based smart photovoltaic panel monitoring system,” Int. J. Reconfigurable Embed. Syst., vol. 13, no. 2, pp. 341–351, 2024, doi: 10.11591/ijres.v13.i2.pp341-351.

M. D. Nugraha, K. A. Mahabojana, and N. A. Prabawa, “Design and build an internet of thing (IOT) solar panel monitoring and solar tracking system,” Int. Res. J. Eng. IT Sci. Res., vol. 9, no. 4, pp. 99–110, 2023, doi: 10.21744/irjeis.v9n4.2334.

Y. A. Winoko, “ESP 8266-based Car Battery Current and Voltage Monitoring Design,” EvrimataJournal Mech. Eng., vol. 01, no. 02, pp. 51–56, 2024.

B. Irawan, S. Hadi, S. Hadi, and K. Witono, “Analysis of The Cooling Spray System for Hot Pool Water With An Electricity Source from Solar Cells : Case Study of Water Cooling,” EvrimataJournal Mech. Eng., vol. 01, no. 01, pp. 30–36, 2023.

U. Mamodiya and N. Tiwari, “Design and Implementation of Hardware-Implemented Dual-Axis Solar Tracking System for Enhanced Energy Efficiency †,” Eng. Proc., vol. 59, no. 1, pp. 1–9, 2023, doi: 10.3390/engproc2023059122.

M. L. Adekanbi, E. S. Alaba, T. J. John, T. D. Tundealao, and T. I. Banji, “Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques,” Clean. Energy Syst., vol. 7, no. October 2023, p. 100094, 2024, doi: 10.1016/j.cles.2023.100094.

K. J. Iheanetu, “Solar Photovoltaic Power Forecasting: A Review,” Sustain., vol. 14, no. 24, 2022, doi: 10.3390/su142417005.

K. N. Nwaigwe, P. Mutabilwa, and E. Dintwa, “An overview of solar power (PV systems) integration into electricity grids,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 629–633, 2019, doi: 10.1016/j.mset.2019.07.002.

S. A. Sarang et al., “Maximizing solar power generation through conventional and digital MPPT techniques: a comparative analysis,” Sci. Rep., vol. 14, no. 1, pp. 1–18, 2024, doi: 10.1038/s41598-024-59776-z.

H. Azaioud, A. Farnam, J. Knockaert, L. Vandevelde, and J. Desmet, “Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone,” Appl. Energy, vol. 356, no. November 2023, p. 122416, 2024, doi: 10.1016/j.apenergy.2023.122416.

Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications,” Results Eng., vol. 20, no. September, p. 101621, 2023, doi: 10.1016/j.rineng.2023.101621.

A. Awasthi et al., “Review on sun tracking technology in solar PV system,” Energy Reports, vol. 6, pp. 392–405, 2020, doi: 10.1016/j.egyr.2020.02.004.

Downloads

Published

2024-12-31

Issue

Section

Articles