Effect of Coconut Shell-Based Active Carbon Adsorbent on Motorcycle Exhaust Gas Emissions
DOI:
https://doi.org/10.70822/evrmata.v1i03.57Keywords:
Active carbon, exhaust gas emissions, coconut shell, emission reduction, motorcycle muffler, CO HC CO2 emissionsAbstract
This study focused on the utilization of active carbon derived from coconut shells as an adsorbent to reduce exhaust gas emissions in motorcycles. The research aimed to compare the exhaust emissions before and after installing active carbon in the muffler and to analyze its effect on the levels of CO, HC, and CO2 at different engine speeds. A laboratory experiment was conducted with varying masses of active carbon, and emission data were collected and analyzed using two-way ANOVA. The results demonstrated that with the use of 200 grams of active carbon, the CO emission decreased by 12.06%, HC by 16.96%, and CO2 by 9.17%. These reductions are attributed to the strong adsorptive properties of active carbon, which facilitated the physical and chemical separation of harmful gases. The study concluded that active carbon significantly reduces exhaust emissions, providing a practical solution for improving air quality in motorcycles. The findings offer an effective method for emission control that could be applied under various operating conditions, making it suitable for widespread implementation in emission-reduction systems for small engines.
References
Z. Deng et al., “Modification of coconut shell-based activated carbon and purification of wastewater,” Adv. Compos. Hybrid Mater., vol. 4, no. 1, 2021, doi: 10.1007/s42114-021-00205-4.
E. El-Seidy et al., “Mechanical and physical characteristics of alkali- activated mortars incorporated with recycled polyvinyl chloride and rubber aggregates,” J. Build. Eng., vol. 60, 2022, doi: 10.1016/j.jobe.2022.105043.
A. Sasmita, I. Isnaini, and U. Almira, “PENGARUH PENAMBAHAN BIOCHAR CANGKANG SAWIT DENGAN VARIASI SUHU PIROLISIS TERHADAP EMISI CO2 DARI TOP SOIL,” J. Tanah dan Sumberd. Lahan, vol. 9, no. 2, 2022, doi: 10.21776/ub.jtsl.2022.009.2.25.
A. Ghofur, S. Syamsuri, A. Mursadin, A. Nugroho, and A. C. Legowo, “IMPLEMENTATION PEAT SOIL ADSORBENT & VARIATION OF FILTER FOR REDUCE EMISSION IMPROVEMENT FROM MOTOR VEHICLE,” Eastern-European J. Enterp. Technol., vol. 1, no. 10(121), 2023, doi: 10.15587/1729-4061.2023.273790.
W. E. Farrant, A. J. Babafemi, J. T. Kolawole, and B. Panda, “Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete,” Materials (Basel)., vol. 15, no. 9, 2022, doi: 10.3390/ma15093018.
A. Mosa, M. M. Mansour, E. Soliman, A. El-Ghamry, M. El Alfy, and A. M. El Kenawy, “Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward,” Sustainability (Switzerland), vol. 15, no. 2. 2023. doi: 10.3390/su15021206.
S. Sameer, V. P, and R. MS, “Control of Carbon Dioxide and other Emissions from Diesel Operated Engines using Activated Charcoal,” Adv. Automob. Eng., vol. 05, no. 02, 2016, doi: 10.4172/2167-7670.1000149.
T. Satiennam, A. Seedam, T. Radpukdee, W. Satiennam, W. Pasangtiyo, and Y. Hashino, “Development of on-road exhaust emission and fuel consumption models for motorcycles and application through traffic microsimulation,” J. Adv. Transp., vol. 2017, 2017, doi: 10.1155/2017/3958967.
E. Julianto, D. Stiawan, F. Fuazen, and E. Sarwono, “EFFECT OF IGNITION SYSTEM IN MOTORCYCLE TO PERFORMANCE AND EXHAUST GAS EMISSIONS WITH FUEL RON 88, RON 90, AND RON 92,” SINTEK J. J. Ilm. Tek. Mesin, vol. 14, no. 2, 2020, doi: 10.24853/sintek.14.2.74-79.
H. H. Yang, S. M. Chien, M. R. Chao, and C. C. Lin, “Particle size distribution of polycyclic aromatic hydrocarbons in motorcycle exhaust emissions,” J. Hazard. Mater., vol. 125, no. 1–3, 2005, doi: 10.1016/j.jhazmat.2005.05.019.
O. A. Odunlami, O. K. Oderinde, F. A. Akeredolu, J. A. Sonibare, O. R. Obanla, and M. E. Ojewumi, “The effect of air-fuel ratio on tailpipe exhaust emission of motorcycles,” Fuel Commun., vol. 11, 2022, doi: 10.1016/j.jfueco.2021.100040.
L. Li et al., “Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions,” Atmos. Environ., vol. 102, 2015, doi: 10.1016/j.atmosenv.2014.11.044.
T. M. Gantina, P. Lestari, M. K. Arrohman, A. Mahalana, and T. Dallmann, “Measurement of motorcycle exhaust emissions on urban roads using remote sensing,” in E3S Web of Conferences, 2024. doi: 10.1051/e3sconf/202448506009.
A. Y. P. Wardoyo, U. P. Juswono, and J. A. E. Noor, “Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice,” Toxicol. Reports, vol. 5, 2018, doi: 10.1016/j.toxrep.2018.02.014.
K. H. Yang, J. H. Mun, and J. U. Lee, “Removal rates of nox, sox, and fine dust particles in textile fabrics coated with zeolite and coconut shell activated carbon,” Appl. Sci., vol. 10, no. 22, 2020, doi: 10.3390/app10228010.
L. Hakim and E. Sedyadi, “Synthesis and Characterization of Fe3O4 Composites Embeded on Coconut Shell Activated Carbon,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 5, no. 3, 2020, doi: 10.20961/jkpk.v5i3.46543.
J. V. Freitas, F. G. E. Nogueira, and C. S. Farinas, “Coconut shell activated carbon as an alternative adsorbent of inhibitors from lignocellulosic biomass pretreatment,” Ind. Crops Prod., vol. 137, 2019, doi: 10.1016/j.indcrop.2019.05.018.
S. R. A. Sasono, M. F. Rois, W. Widiyastuti, T. Nurtono, and H. Setyawan, “Nanofiber-enrich dispersed activated carbon derived from coconut shell for supercapacitor material,” Results Eng., vol. 18, 2023, doi: 10.1016/j.rineng.2023.101070.
A. Halepoto, M. Kashif, Y. Su, J. Cheng, W. Deng, and B. Zhao, “Preparations and Characterization on Fe Based Catalyst Supported on Coconut Shell Activated Carbon CS(AC) and SCR of NOx-HC,” Catal. Surv. from Asia, vol. 24, no. 2, 2020, doi: 10.1007/s10563-020-09293-6.
S. Z. Naji, C. T. Tye, and A. R. Mohamed, “Role of sulfuric acid modification to coconut shell activated carbon in waste cooking oil upgrading,” Biomass Convers. Biorefinery, vol. 14, no. 5, 2024, doi: 10.1007/s13399-022-03018-7.
E. J. Masthura and A. H. Daulay, “Effects of activation temperature on characteristics and microstructure of coconut shell-based activated carbon,” Eurasian J. Anal. Chem., vol. 13, no. 4, 2018.
S. Lawal and M. A. A. Zaini, “Dynamic adsorption characteristics of orthophosphate using iron-loaded coconut shell-activated carbon,” in Materials Today: Proceedings, 2024. doi: 10.1016/j.matpr.2023.10.165.
R. Zhang et al., “Exhaust Emissions from Gasoline Vehicles with Different Fuel Detergency and the Prediction Model Using Deep Learning,” Sensors, vol. 23, no. 17, 2023, doi: 10.3390/s23177655.
A. O. Hasan, A. Abu-Jrai, A. H. Al-Muhtaseb, A. Tsolakis, and H. Xu, “HC, CO and NOx emissions reduction efficiency of a prototype catalyst in gasoline bi-mode SI/HCCI engine,” J. Environ. Chem. Eng., vol. 4, no. 2, 2016, doi: 10.1016/j.jece.2016.04.015.
K. N. Balan, T. N. Valarmathi, M. S. Harish Reddy, G. A. Reddy, J. K. M. K. Saiinivas, and Vasan, “Analysis of CO2, CO and HC emission reduction in automobiles,” in IOP Conference Series: Materials Science and Engineering, 2017. doi: 10.1088/1757-899X/197/1/012012.
C. B. Kothare et al., “Performance improvement and CO and HC emission reduction of variable compression ratio spark-ignition engine using n-pentanol as a fuel additive,” Alexandria Eng. J., vol. 74, 2023, doi: 10.1016/j.aej.2023.05.024.
K. Zhang et al., “Sustainable CO2 management through integrated CO2 capture and conversion,” Journal of CO2 Utilization, vol. 72. 2023. doi: 10.1016/j.jcou.2023.102493.
S. Choi, J. H. Drese, and C. W. Jones, “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources,” ChemSusChem, vol. 2, no. 9. 2009. doi: 10.1002/cssc.200900036.
Z. Deng, Q. Zhang, Q. Deng, Z. Guo, and I. Seok, “Modification of coconut shell activated carbon and purification of volatile organic waste gas acetone,” Adv. Compos. Hybrid Mater., vol. 5, no. 1, 2022, doi: 10.1007/s42114-021-00345-7.
W. Wongvitvichot, S. Thitiprasert, N. Thongchul, and T. Chaisuwan, “Metal ion removal using a low-cost coconut shell activated carbon bioadsorbent in the recovery of lactic acid from the fermentation broth,” Bioresour. Bioprocess., vol. 10, no. 1, 2023, doi: 10.1186/s40643-023-00672-1.
E. Sulistyani, D. B. Tamado, F. Wulandari, and E. Budi, “Coconut Shell Activated Carbon as an Alternative Renewable Energy,” KnE Energy, vol. 2, no. 2, 2015, doi: 10.18502/ken.v2i2.360.
A. Qisti, Y. Utomo, and D. A. Rokhim, “Treatment of Dye Wastewater from Batik Industry by Coconut Shell Activated Carbon Adsorption,” Fuller. J. Chem., vol. 6, no. 1, 2021, doi: 10.37033/fjc.v6i1.213.
Z. Deng et al., “Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas,” Adv. Compos. Hybrid Mater., vol. 4, no. 3, 2021, doi: 10.1007/s42114-021-00273-6.
E. H. Sujiono et al., “Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application,” Results Chem., vol. 4, 2022, doi: 10.1016/j.rechem.2022.100291.
L. P. Hoang, H. T. Van, T. T. Hang Nguyen, V. Q. Nguyen, and P. Q. Thang, “Coconut shell activated carbon/CoFe2O4 composite for the removal of rhodamine B from aqueous solution,” J. Chem., vol. 2020, 2020, doi: 10.1155/2020/9187960.
W. Sun et al., “An optical study of the combustion and flame development of ammonia-diesel dual-fuel engine based on flame chemiluminescence,” Fuel, vol. 349, 2023, doi: 10.1016/j.fuel.2023.128507.
T. Subramanian, A. Sonthalia, and E. G. Varuvel, “Effect of calcite/activated carbon-based post-combustion CO 2 capture system in a biodiesel-fueled CI engine—An experimental study,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 41, no. 16, 2019, doi: 10.1080/15567036.2018.1548525.
L. Nie et al., “Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation,” Science (80-. )., vol. 358, no. 6369, 2017, doi: 10.1126/science.aao2109.
S. Bilgin, Y. Onal, S. O. Akansu, and M. I. Ilhak, “THE EFFECT OF USING ACTIVATED CARBON OBTAINED FROM SEWAGE SLUDGE AS A FUEL ADDITIVE ON ENGINE PERFORMANCE AND EMISSIONS,” Therm. Sci., vol. 27, no. 4, 2023, doi: 10.2298/TSCI2304313B.



