Single Propeller Design of Flying Electric Vehicles
DOI:
https://doi.org/10.70822/evrmata.v1i04.55Keywords:
: propeller design, angle of attack, flying electric vehicleAbstract
The development of passenger drone technology has opened up new opportunities in the air transportation industry, offering innovative and efficient mobility solutions. One of the key components in eVTOL vehicle design is the propeller, which functions to produce the thrust required for takeoff, hovering and flying. Efficient and optimal propeller design is very important to improve the performance and energy efficiency of these vehicles. The method used in this research includes computational fluid dynamics (CFD) simulation analysis to model the interaction between the propeller and air flow. The methodology used includes computational fluid dynamics (CFD) simulations to analyze the air flow and forces acting on the propeller, as well as prototype testing to validate the simulation results.
References
A. Jameson, “Aerodynamic Design and Optimization,” 2003, doi: 10.2514/6.2003-3438.
J. Jiao, X. Ma, B. Song, and J. Yang, “Aerodynamic and Structural Design of the Composite Propeller for Near Space Vehicles,” 32nd Congr. Int. Counc. Aeronaut. Sci. ICAS 2021, pp. 1–9, 2021.
Z. J. Huang, H. D. Yao, A. Lundbladh, and L. Davidson, “Low-noise propeller design for quiet electric aircraft,” Aiaa Aviat. 2020 Forum, 2020, doi: 10.2514/6.2020-2596.
S. Wang, J. Li, X. Gao, and B. H. Yan, “Conceptual Design of Four Rotors Flying Car Based on Bionics,” Adv. Eng. Res., vol. 141, no. Icmmcce, pp. 928–933, 2017, doi: 10.2991/icmmcce-17.2017.166.
J. Munguía Calzada, K. W. Van Treuren, R. Bontempo, M. Cardone, M. Manna, and G. Vorraro, “Designing Small Propellers for Optimum Efficiency,” Energy Procedia, vol. 45, p. 27, 2019, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1876610214001179%250Ahttps://repositorio.unican.es/xmlui/bitstream/handle/10902/16634/418495.pdf%250Ahttp://hdl.handle.net/10902/16634%250Ahttps://repositorio.unican.es/xmlui/bitstream/handle/10902/16634/41849
M. Shamiyeh, J. Bijewitz, and M. Hornung, “A Review of Recent Personal Air Vehicle Concepts,” Aerosp. Eur. 6th CEAS Conf., no. 913, pp. 1–18, 2017, [Online]. Available: https://www.fzt.haw-hamburg.de/pers/Scholz/ewade/2017/CEAS2017/913-final.pdf
T. C. A. Stokkermans, D. Usai, T. Sinnige, and L. L. M. Veldhuis, “Aerodynamic interaction effects between propellers in typical evtol vehicle configurations,” J. Aircr., vol. 58, no. 4, pp. 815–833, 2021, doi: 10.2514/1.C035814.
L. Piancastelli, M. Sali, and C. Leon-Cardenas, “Basic Considerations and Conceptual Design of a VSTOL Vehicle for Urban Transportation,” Drones, vol. 6, no. 5, 2022, doi: 10.3390/drones6050102.
H. Martin, “Electric Flight - Potential and Limitations,” AVT-209 Work. Lisbon, pp. 1–30, 2012.
AslamShaikh, “Study of Propeller Design Parameters,” Int. J. Innov. Eng. Res. Technol., pp. 1–7, 2014.
O. Gur, “Propeller Design,” Propeller Des., no. July, pp. 4–5, 2024, doi: 10.2514/4.107146.
A. Sawale, D. Archana, and C. Seshank, “Design and Analysis of Propeller,” IOP Conf. Ser. Mater. Sci. Eng., vol. 455, no. 1, 2018, doi: 10.1088/1757-899X/455/1/012018.
C. W. Dekanski, “Design and Analysis of Propeller Blade Geometry using the PDE Methode,” Univ. Leeds Dep. Appl. Math. Stud. , no. August, pp. 12–13, 1993, [Online]. Available: https://etheses.whiterose.ac.uk/4168/1/uk_bl_ethos_569278.pdf
S. Kilmartin-lynch, R. Roychand, M. Saberian, J. Li, G. Zhang, and S. Setunge, “Case Studies in Construction Materials A sustainable approach on the utilisation of COVID-19 plastic based isolation gowns in structural concrete,” Case Stud. Constr. Mater., vol. 17, no. July, p. e01408, 2022, doi: 10.1016/j.cscm.2022.e01408.
C. P. Carrera, Ö. E. Genel, R. La Regina, C. M. Pappalardo, and D. Guida, “A Comprehensive and Systematic Literature Review on Flying Cars in Contemporary Research,” J. Appl. Comput. Mech., vol. xx, no. x, pp. 1–25, 2025, doi: 10.22055/jacm.2024.47083.4658.
M. H. Su, K. Chaw, S. Hlaing, and C. S. Aung, “Design and Development of Flying Vehicle,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 9, no. January, pp. 1693–1700, 2021, doi: 10.13140/RG.2.2.15014.96325.
N. H. Nazarloo, O. Zabihi, K. Shirvanimoghaddam, M. Ahmadi, P. Zamani, and M. Naebe, “Innovative Ex-Situ catalyst bed integration for LDPE plastic Pyrolysis: A thermodynamically closed system approach,” Chem. Eng. J., vol. 495, no. March, 2024, doi: 10.1016/j.cej.2024.153450.
M. Irfan et al., “Response Surface Methodology Analysis of Pyrolysis Reaction Rate Constants for Predicting Efficient Conversion of Bulk Plastic Waste into Oil and Gaseous Fuels,” 2022. doi: 10.3390/en15249594.
L. Cedro and K. Wieczorkowski, “Optimizing PID controller gains to model the performance of a quadcopter,” Transp. Res. Procedia, vol. 40, pp. 156–169, 2019, doi: 10.1016/j.trpro.2019.07.026.
S. J. Hayward, J. Earps, R. Sharpe, K. van Lopik, J. Tribe, and A. A. West, “A novel inertial positioning update method, using passive RFID tags, for indoor asset localisation,” CIRP J. Manuf. Sci. Technol., vol. 35, pp. 968–982, 2021, doi: 10.1016/j.cirpj.2021.10.006.
E. Rahmaniar, M. Maemonah, and I. Mahmudah, “Kritik Terhadap Teori Perkembangan Kognitif Piaget pada Tahap Anak Usia Sekolah Dasar,” J. Basicedu, vol. 6, no. 1, pp. 531–539, 2021, doi: 10.31004/basicedu.v6i1.1952.
S. S. Aslamiah and S. Hidayat, “Analisis Kebutuhan Pengembangan bahan bacaan Buku cerita Bergambar Situs Kerajaan Kendan Berbasis Karakter di Sekolah Dasar,” PEDADIDAKTIKA J. Ilm. Pendidik. Guru Sekol. Dasar, vol. 8, no. 4, 2021, doi: 10.17509/pedadidaktika.v8i4.41753.
X. He et al., “Improved beluga whale optimization-based variable universe fuzzy controller for brushless direct current motors of electric tractors,” Comput. Electr. Eng., vol. 120, no. PC, p. 109866, 2024, doi: 10.1016/j.compeleceng.2024.109866.
S. Agoes and A. Candra, “Analysis of the effect of slab thickness on crack width in rigid pavement slabs,” EUREKA, Phys. Eng., vol. 2021, no. 2, pp. 42–51, 2021, doi: 10.21303/2461-4262.2021.001693.
V. K Rathod and P. S. . Kamdi, “Design & Fabrication of PVC Bladed Inexpensive Wind Turbine,” IOSR J. Mech. Civ. Eng., vol. 11, no. 4, pp. 114–119, 2014, doi: 10.9790/1684-1142114119.



