The Effect of Pin Length and Compressive Force in Double Side Friction Stir Welding on Bending Strength of AA1100

Authors

  • Sukma Satriawan Politeknik Negeri Malang
  • Agus Setiawan State Polytechnic of Malang
  • Dwi Pebrianti INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
  • Zainah Binti MD. Zain UNIVERSITI MALAYSIA PAHANG

DOI:

https://doi.org/10.70822/evrmata.vi.16

Keywords:

Aluminium AA1100, bending strength, double side friction stir welding, downward force, pin length

Abstract

Many new welding methods have emerged to improve connection results, including friction stir welding (FSW). FSW is a welding method that is widely used in welding aluminium  alloys. FSW method on AA1100 aluminium material has not yet obtained the maximum bending strength so it is necessary to study the improvement of the quality of FSW joints using the welding method on both sides or double side friction stir welding (DFSW). This study aims to determine the effect of pin length and downward force on double side friction stir welding (DFSW) on the bending strength of AA1100 aluminium . The independent variables of this study are pin length (1.5 mm, 2 mm, 2.5 mm) and downward force (30 kg, 35 kg, 40 kg, 45 kg). The controlled variables are shoulder diameter of 25 mm, machine table translational speed of 10 mm/min, spindle rotation speed of 1750 rpm, base plate temperature of 250ºC, and AA1100 plate thickness of 3.6 mm with butt joint type welding connection model. The method used in this research is experimental using the factorial design of experiment (DOE) data analysis method. The results of this study indicate that pin length and downward force have a significant effect on the bending strength of DFSW welded joints on AA1100. The maximum bending strength value of the welded joint was 289.59 MPa at a pin length variation of 2 mm and a compressive force of 35 kg. The percentage of weld defects including tunnel and flash in welded joints with maximum bending strength is identified as the least and the micro test results also show the least FeAl3 particle grains.

References

M. Hasieber, M. Kranz, T. Löhn, M. Grätzel, A. Zemlicka, and J. P. Bergmann, “Effect of friction stir welding tool hardness on wear behaviour in friction stir welding of AA-6060 T66,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 236, no. 6, 2022, doi: 10.1177/14644207211073055.

N. Rajesh Jesudoss Hynes et al., “An experimental insight of friction stir welding of dissimilar AA 6061/Mg AZ 31 B joints,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 236, no. 6–7, 2022, doi: 10.1177/09544054211043474.

R. Rudrapati, “Effects of welding process conditions on friction stir welding of polymer composites: A review,” Composites Part C: Open Access, vol. 8. 2022. doi: 10.1016/j.jcomc.2022.100269.

E. Kaygusuz, F. Karaömerlioğlu, and S. Akıncı, “A review of friction stir welding parameters, process and application fields,” Turkish Journal of Engineering, vol. 7, no. 4. 2023. doi: 10.31127/tuje.1107210.

H. Deng et al., “Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding,” J. Manuf. Process., vol. 64, 2021, doi: 10.1016/j.jmapro.2021.01.024.

A. Heidarzadeh, M. Javidani, M. Mofarrehi, A. Farzaneh, and X. G. Chen, “Submerged dissimilar friction stir welding of aa6061 and AA7075 aluminum alloys: Microstructure characterization and mechanical property,” Metals (Basel)., vol. 11, no. 10, 2021, doi: 10.3390/met11101592.

M. S. M. Isa et al., “Recent research progress in friction stir welding of aluminium and copper dissimilar joint: a review,” Journal of Materials Research and Technology, vol. 15. 2021. doi: 10.1016/j.jmrt.2021.09.037.

H. I. Khalaf, R. Al-sabur, M. E. Abdullah, A. Kubit, and H. A. Derazkola, “Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy,” Materials (Basel)., vol. 15, no. 6, 2022, doi: 10.3390/ma15062223.

A. Chumaevskii, A. Amirov, A. Ivanov, V. Rubtsov, and E. Kolubaev, “Friction Stir Welding/Processing of Various Metals with Working Tools of Different Materials and Its Peculiarities for Titanium Alloys: A Review,” Metals, vol. 13, no. 5. 2023. doi: 10.3390/met13050970.

I. S. Zuiko, S. Malopheyev, S. Mironov, and R. Kaibyshev, “Dissimilar Friction Stir Welding of AA2519 and AA5182,” Materials (Basel)., vol. 15, no. 24, 2022, doi: 10.3390/ma15248776.

A. Dimopoulos, A. Vairis, N. Vidakis, and M. Petousis, “On the friction stir welding of al 7075 thin sheets,” Metals (Basel)., vol. 11, no. 1, 2021, doi: 10.3390/met11010057.

D. Ambrosio, Y. Morisada, K. Ushioda, and H. Fujii, “Material flow in friction stir welding: A review,” Journal of Materials Processing Technology, vol. 320. 2023. doi: 10.1016/j.jmatprotec.2023.118116.

S. H. Iftikhar, A. H. I. Mourad, J. Sheikh-Ahmad, F. Almaskari, and S. Vincent, “A comprehensive review on optimal welding conditions for friction stir welding of thermoplastic polymers and their composites,” Polymers, vol. 13, no. 8. 2021. doi: 10.3390/polym13081208.

B. Wang, P. Zhu, Y. Cao, L. Zhou, P. Xue, and L. Wu, “Effects of different friction stir welding processes on residual stress and deformation of Ti62A alloy joints,” J. Mater. Res. Technol., vol. 26, 2023, doi: 10.1016/j.jmrt.2023.08.308.

A. Ghiasvand et al., “Investigation of mechanical and microstructural properties of welded specimens of aa6061-t6 alloy with friction stir welding and parallel-friction stir welding methods,” Materials (Basel)., vol. 14, no. 20, 2021, doi: 10.3390/ma14206003.

P. Yu, C. S. Wu, and L. Shi, “Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates,” Acta Mater., vol. 207, 2021, doi: 10.1016/j.actamat.2021.116692.

M. Akbari, M. R. M. Aliha, and F. Berto, “Investigating the role of different components of friction stir welding tools on the generated heat and strain,” Forces Mech., vol. 10, 2023, doi: 10.1016/j.finmec.2023.100166.

R. Beygi, I. Galvão, A. Akhavan-Safar, H. Pouraliakbar, V. Fallah, and L. F. M. da Silva, “Effect of Alloying Elements on Intermetallic Formation during Friction Stir Welding of Dissimilar Metals: A Critical Review on Aluminum/Steel,” Metals, vol. 13, no. 4. 2023. doi: 10.3390/met13040768.

C. Rathinasuriyan, E. Pavithra, R. Sankar, and V. S. S. Kumar, “Current Status and Development of Submerged Friction Stir Welding: A Review,” International Journal of Precision Engineering and Manufacturing - Green Technology, vol. 8, no. 2. 2021. doi: 10.1007/s40684-020-00187-6.

D. Shaysultanov, K. Raimov, N. Stepanov, and S. Zherebtsov, “Friction stir welding of a trip fe49mn30cr10co10c1 high entropy alloy,” Metals (Basel)., vol. 11, no. 1, 2021, doi: 10.3390/met11010066.

M. Arif, D. Kumar, and A. Noor Siddiquee, “Friction stir welding and friction stir spot welding of polymethyl methacrylate (PMMA) to other materials: A review,” Mater. Today Proc., vol. 62, 2022, doi: 10.1016/j.matpr.2022.02.621.

M. M. El-Sayed, A. Y. Shash, M. Abd-Rabou, and M. G. ElSherbiny, “Welding and processing of metallic materials by using friction stir technique: A review,” Journal of Advanced Joining Processes, vol. 3. 2021. doi: 10.1016/j.jajp.2021.100059.

C. Vimalraj and P. Kah, “Experimental review on friction stir welding of aluminium alloys with nanoparticles,” Metals, vol. 11, no. 3. 2021. doi: 10.3390/met11030390.

H. Luo, F. Zhao, S. Guo, C. Yu, G. Liu, and T. Wu, “Mechanical performance research of friction stir welding robot for aerospace applications,” Int. J. Adv. Robot. Syst., vol. 18, no. 1, 2021, doi: 10.1177/1729881421996543.

V. Patel et al., “High-speed friction stir welding in light weight battery trays for the EV industry,” Sci. Technol. Weld. Join., vol. 27, no. 4, 2022, doi: 10.1080/13621718.2022.2045121.

A. A. E. Sidhom, S. A. R. Naga, and A. M. Kamal, “Friction stir spot welding of similar and dissimilar high density polyethylene and polypropylene sheets,” Adv. Ind. Manuf. Eng., vol. 4, 2022, doi: 10.1016/j.aime.2022.100076.

A. Heidarzadeh et al., “Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution,” Progress in Materials Science, vol. 117. 2021. doi: 10.1016/j.pmatsci.2020.100752.

M. M. Z. Ahmed, M. M. El-Sayed Seleman, D. Fydrych, and G. Çam, “Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review,” Materials, vol. 16, no. 8. 2023. doi: 10.3390/ma16082971.

Y. Sun, W. Gong, J. Feng, G. Lu, R. Zhu, and Y. Li, “A Review of the Friction Stir Welding of Dissimilar Materials between Aluminum Alloys and Copper,” Metals, vol. 12, no. 4. 2022. doi: 10.3390/met12040675.

D. G. Mohan and C. S. Wu, “A Review on Friction Stir Welding of Steels,” Chinese Journal of Mechanical Engineering (English Edition), vol. 34, no. 1. 2021. doi: 10.1186/s10033-021-00655-3.

H. Zhang and F. Khoshnaw, “Friction stir welding,” in Welding of Metallic Materials: Methods, Metallurgy, and Performance, 2023. doi: 10.1016/B978-0-323-90552-7.00006-7.

T. Prabaharan, M. B. S. Sreekara Reddy, A. Bovas Herbert Bejaxhin, Ramanan, V. Pothamsetty Kasi, and Jenaris, “Strain-cum-Deformation Analysis of Friction Stir Welded AA5052 and AA6061 Samples with Microstructural Analysis,” J. Mines, Met. Fuels, vol. 70, no. 10, pp. 140–150, 2022, doi: 10.18311/jmmf/2022/31214.

Downloads

Published

2024-04-08

Issue

Section

Articles