The Effect of Root Face Height and width of the Anvil Heating Plate of Hot-Gas Welding on Bending Strength of Hdpe Sheet

Authors

  • Ahmad fikri fahruddin State Polytechnic of Malang
  • Agus Setiawan State Polytechnic of Malang
  • Listiyono Listiyono State Polytechnic of Malang
  • Mohammad sukri mustapa Universiti tun hussein onn malaysia

DOI:

https://doi.org/10.70822/evrmata.vi.15

Keywords:

hot-gas welding, bending strength, heater width, hdpe sheet, root face height

Abstract

Hot-Gas Welding is a welding process that is widely used in plastic materials. In previous studies, there was a phenomenon that occurred, namely the connection of the base material before the welding process which affected the bending strength of HDPE sheets. The purpose of this study was to determine the effect of variations in root face height and width of the anvil heating plate on bending strength, and also to determine the interaction of the two variables. The method used in this study was experimental. The hot-gas welding process, by varying two independent variables, namely root face height 0 mm, 0.8 mm, 1.6 mm, 2.4 mm and anvil heating plate width of 10 mm, 15 mm, and 20 mm, with controlled variables HDPE material with 5 mm thick, HDPE filler with 4 mm thick, hot gas temperature 250 ℃, single v bevel shape, anvil plate temperature 150 ℃ and v grove angle 60º. The results of this study indicate that the root face height and width of the anvil heating plate affect the bending strength of hot-gas welding HDPE sheets. The maximum value of bending strength is 47.14 Mpa or 85.32% of the bending strength of the parent material. The maximum bending strength value is obtained from the interaction of root face height of 2.4mm and anvil heating plate width of 20mm. Weld defects in the highest bending strength results were identified the least.

References

[1] C. R. C. Lima, M. J. X. Belém, H. D. C. Fals, and C. A. D. Rovere, “Wear and corrosion performance of Stellite 6® coatings applied by HVOF spraying and GTAW hotwire cladding,” J. Mater. Process. Technol., vol. 284, 2020, doi: 10.1016/j.jmatprotec.2020.116734.

[2] R. Kumar et al., “Numerical and experimental investigation on distribution of residual stress and the influence of heat treatment in multi-pass dissimilar welded rotor joint of alloy 617/10Cr steel,” Int. J. Press. Vessel. Pip., vol. 199, 2022, doi: 10.1016/j.ijpvp.2022.104715.

[3] L. Lu, Z. Cai, J. Yang, Z. Liang, Q. Sun, and J. Pan, “Study on Key Parameters of Dilution Ratio of the Bead Deposited by GTAW Method for Nuclear Components,” Metals (Basel)., vol. 12, no. 9, 2022, doi: 10.3390/met12091506.

[4] A. Mashhuriazar, H. Omidvar, Z. Sajuri, C. H. Gur, and A. H. Baghdadi, “Effects of pre-weld heat treatment and heat input on metallurgical and mechanical behaviour in HAZ of multi-pass welded in-939 superalloy,” Metals (Basel)., vol. 10, no. 11, 2020, doi: 10.3390/met10111453.

[5] M. Zinke, S. Burger, and S. Jüttner, “Processing of Haynes® 282® Alloy by Direct Energy Deposition with Arc and Wire,” Materials (Basel)., vol. 16, no. 4, 2023, doi: 10.3390/ma16041715.

[6] A. R. Pavan, J. Ganesh Kumar, B. Arivazhagan, and M. Vasudevan, “Evaluation of strength in stainless steel weld joints using ball indentation technique,” Mater. Sci. Technol. (United Kingdom), vol. 39, no. 14, 2023, doi: 10.1080/02670836.2023.2180892.

[7] K. Łyczkowska and J. Adamiec, “The Phenomena and Criteria Determining the Cracking Susceptibility of Repair Padding Welds of the Inconel 713C Nickel Alloy,” Materials (Basel)., vol. 15, no. 2, 2022, doi: 10.3390/ma15020634.

[8] E. J. Chun, Y. S. Jeong, K. M. Kim, H. Lee, and S. M. Seo, “Suppression of liquation cracking susceptibility via pre-weld heat treatment for manufacturing of CM247LC superalloy turbine blade welds,” J. Adv. Join. Process., vol. 4, 2021, doi: 10.1016/j.jajp.2021.100069.

[9] R. Kumar, H. C. Dey, A. K. Pradhan, M. M. Mahapatra, and C. Pandey, “Residual stresses study in butt welded joint of Inconel 617 alloy and effect of post weld heat treatment on residual stresses,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 237, no. 7, 2023, doi: 10.1177/14644207221149205.

[10] R. Kumar, M. M. Mahapatra, A. K. Pradhan, A. Giri, and C. Pandey, “Experimental and numerical study on the distribution of temperature field and residual stress in a multi-pass welded tube joint of Inconel 617 alloy,” Int. J. Press. Vessel. Pip., vol. 206, 2023, doi: 10.1016/j.ijpvp.2023.105034.

[11] I. Miturska, A. Rudawska, and V. Brunella, “Strength of Assembly Butt Joints of Plastic Pipes,” Adv. Sci. Technol. Res. J., vol. 14, no. 1, 2020, doi: 10.12913/22998624/113544.

[12] A. Mashhuriazar, C. Hakan Gur, Z. Sajuri, and H. Omidvar, “Effects of heat input on metallurgical behavior in HAZ of multi-pass and multi-layer welded IN-939 superalloy,” J. Mater. Res. Technol., vol. 15, 2021, doi: 10.1016/j.jmrt.2021.08.113.

[13] I. S. Nefelov and N. I. Baurova, “Durability Characterization of Joints of Plastic Products Exposed to Negative Temperatures Fabricated Using Additive Technologies,” Polym. Sci. - Ser. D, vol. 14, no. 3, 2021, doi: 10.1134/S1995421221030229.

[14] P. H. Tjahjanti, Iswanto, E. Widodo, and S. Pamuji, “Examination of Thermoplastic Polymers for Splicing and Bending,” Nano Hybrids Compos., vol. 38, 2023, doi: 10.4028/p-8myjhn.

[15] I. P. A. Wibawa et al., “ANALYSIS OF TENSILE AND FLEXURAL STRENGTH OF HDPE MATERIAL JOINTS IN SHIP CONSTRUCTION,” J. Appl. Eng. Sci., vol. 21, no. 2, 2023, doi: 10.5937/jaes0-41924.

[16] R. Rohman, A. Prasetyo, A. Abdulah, K. Karyadi, T. Thiyana, and S. Sukarman, “The Effect of Temperature on Tensile Strength of Polypropylene Plate Material Using Hot Gas Welding (HGW) Method,” J. Tek. Mesin Mech. Xplore, vol. 3, no. 1, 2022, doi: 10.36805/jtmmx.v3i1.2453.

[17] X. Cui, L. Tian, P. Zhao, D. Wang, Y. Wang, and W. Wang, “The morphology and mechanical property of hot gas implant welding joint of polypropylene,” Mater. Lett., vol. 293, 2021, doi: 10.1016/j.matlet.2021.129729.

[18] J. Schmid, D. F. Weißer, D. Mayer, L. Kroll, and M. H. Deckert, “Increase of the efficiency in hot gas welding by optimization of the gas flow,” Technol. Light. Struct., vol. 5, no. 1, 2022, doi: 10.21935/tls.v5i1.154.

[19] P. Zhao, L. Tian, X. Cui, X. Xiong, D. Wang, and G. Li, “Hot gas implant welding of polypropylene via a three-dimensional porous copper implant,” Compos. Commun., vol. 25, 2021, doi: 10.1016/j.coco.2021.100761.

[20] M. Bialaschik, V. Schöppner, M. Albrecht, and M. Gehde, “Influence of material degradation on weld seam quality in hot gas butt welding of polyamides,” Weld. World, vol. 65, no. 6, 2021, doi: 10.1007/s40194-021-01108-0.

[21] Y. Wang et al., “A comprehensive analysis of ultrasonic pulse current reducing hot cracking in Inconel 718 welds,” Mater. Charact., vol. 187, 2022, doi: 10.1016/j.matchar.2022.111840.

[22] M. Abu-Aesh, M. Taha, A. S. El-Sabbagh, and L. Dorn, “Hot-cracking susceptibility of fully austenitic stainless steel using pulsed-current gas tungsten arc-welding process,” Eng. Reports, vol. 3, no. 3, 2021, doi: 10.1002/eng2.12308.

[23] C. Neelamegam, R. Meenakshisundaram, and V. Muthukumaran, “Process parameter optimization of hot-wire TIG welding of 10 mm thick type 316LN stainless steel plates,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 238, no. 3, 2024, doi: 10.1177/09544062231175779.

[24] T. Dai et al., “The Toughness of High-Strength Steel Weld Metals :High weld toughness can be achieved by using an inert shielding gas during welding to reduce oxide inclusions in the weld metal,” Weld. J., vol. 101, no. 2, 2022, doi: 10.29391/2022.101.006.

[25] D. Annamalai, J. Nampoothiri, P. K. Manikandan Rajam, and H. K. Radhakrishnan, “Optimization of Ultrasonic-Assisted TIG (UA-TIG) Welding Process Parameters for AA7075 Alloy Joints Using RSM-GA Approach,” J. Test. Eval., vol. 51, no. 5, 2023, doi: 10.1520/JTE20220445.

[26] M. Braun et al., “Mechanical behavior of additively and conventionally manufactured 316L stainless steel plates joined by gas metal arc welding,” J. Mater. Res. Technol., vol. 24, 2023, doi: 10.1016/j.jmrt.2023.03.080.

[27] A. Mashhuriazar et al., “Investigating the Effects of Repair Welding on Microstructure, Mechanical Properties, and Corrosion Behavior of IN-939 Superalloy,” J. Mater. Eng. Perform., vol. 32, no. 15, 2023, doi: 10.1007/s11665-022-07596-5.

[28] L. Budde et al., “Influence of shielding gas coverage during laser hot-wire cladding with high carbon steel,” Int. J. Adv. Manuf. Technol., vol. 127, no. 7–8, 2023, doi: 10.1007/s00170-023-11350-z.

[29] S. Sravan, S. Rajakumar, K. Rajagopalan, and K. Subramanian, “Predicting hot wire tungsten inert gas welding parameters for joining P91 and 304HCu steel using multi-optimization techniques,” Multidiscip. Model. Mater. Struct., vol. 19, no. 3, 2023, doi: 10.1108/MMMS-10-2022-0233.

[30] N. Suwannatee, S. Wonthaisong, M. Yamamoto, S. Shinohara, and R. Phaoniam, “Optimization of welding conditions for hot-wire GMAW with CO2 shielding on heavy-thick butt joint,” Weld. World, vol. 66, no. 4, 2022, doi: 10.1007/s40194-021-01227-8.

[31] P. Subramani, N. Arivazhagan, S. K. Selvaraj, S. Mancin, and M. Manikandan, “Influence of hot corrosion on pulsed current gas tungsten arc weldment of aerospace-grade 80A alloy exposed to high temperature aggressive environment,” Int. J. Thermofluids, vol. 14, 2022, doi: 10.1016/j.ijft.2022.100148.

[32] A. Setiawan, K. Witono, and G. Gumono, “PENGARUH TEMPERATUR PELAT-LANDASAN PADA JIG HOT-GAS WELDING DAN SUDUT V-GROOVE TERHADAP KEKUATAN TARIK SAMBUNGAN LAS HDPE SHEET,” J. Energi dan Teknol. Manufaktur, vol. 5, no. 01, 2022, doi: 10.33795/jetm.v5i01.116.

[33] S. Ingle and M. J. Deshmukh, “Parametric Analysis of Hot Gas Welding for PP+EPR Blend and Evaluation of Welds in Tensile Conditions,” Int. J. Innov. Sci. Res. Technol., vol. 5, no. 6, 2020, doi: 10.38124/ijisrt20jun445.

[34] A. L. A.R. et al., “Analisis Pengaruh Variasi Suhu dan Jarak Gap Terhadap Parameter Penggunaan Hot Gas Welding Pada Pembuatan Perahu PVC,” INOVTEK POLBENG, vol. 13, no. 1, 2023, doi: 10.35314/ip.v13i1.3204.

Downloads

Published

2024-06-29

Issue

Section

Articles