The Effect of Root Face Height and Width of Hot-Gas Welding Plate Heater on Tensile Strength of HDPE Sheet
DOI:
https://doi.org/10.70822/evrmata.vi.13Keywords:
hot-gas welding1, tensile strength 2, heater width 3, hdpe sheet 4, root face height 5Abstract
Hot-Gas Welding is a welding process that is widely used in plastic materials. In previous studies, there was a phenomenon that occurred, namely the early connection of the parent material before the welding process which affected the tensile strength of HDPE sheets. The purpose of this study was to determine the effect of variations in root face height and width of the anvil heating plate on tensile strength, and also to determine the interaction of the two variables. The welding process of Hot-Gas Welding, by varying two independent variables namely root face height 0 mm, 0.8 mm, 1.6 mm, 2.4 mm and the width of the anvil heating plate 10 mm, 15 mm, and 20 mm. The controlled variables include HDPE material 5 mm thick, HDPE filler 4 mm thick, hot gas temperature 250 ℃, single v bevel shape, anvil plate temperature 150 ℃ and v grove angle 60º. The results of this study indicate that the root face height and anvil plate width affect the tensile strength of hot-gas welding HDPE sheets. The maximum value of tensile strength is 27.09 Mpa or 85.32% of the tensile strength of the parent material. The maximum tensile strength value is obtained from the interaction of the root face height of 2.4 mm and the width of the heating plate of 15 mm. Distortion and linear misalignment weld defects at the highest tensile strength results were identified the least.
References
R. Kumar et al., “Numerical and experimental investigation on distribution of residual stress and the influence of heat treatment in multi-pass dissimilar welded rotor joint of alloy 617/10Cr steel,” Int. J. Press. Vessel. Pip., vol. 199, 2022, doi: 10.1016/j.ijpvp.2022.104715.
L. Lu, Z. Cai, J. Yang, Z. Liang, Q. Sun, and J. Pan, “Study on Key Parameters of Dilution Ratio of the Bead Deposited by GTAW Method for Nuclear Components,” Metals (Basel)., vol. 12, no. 9, 2022, doi: 10.3390/met12091506.
A. Mashhuriazar, H. Omidvar, Z. Sajuri, C. H. Gur, and A. H. Baghdadi, “Effects of pre-weld heat treatment and heat input on metallurgical and mechanical behaviour in HAZ of multi-pass welded in-939 superalloy,” Metals (Basel)., vol. 10, no. 11, 2020, doi: 10.3390/met10111453.
A. R. Pavan, J. Ganesh Kumar, B. Arivazhagan, and M. Vasudevan, “Evaluation of strength in stainless steel weld joints using ball indentation technique,” Mater. Sci. Technol. (United Kingdom), vol. 39, no. 14, 2023, doi: 10.1080/02670836.2023.2180892.
K. Łyczkowska and J. Adamiec, “The Phenomena and Criteria Determining the Cracking Susceptibility of Repair Padding Welds of the Inconel 713C Nickel Alloy,” Materials (Basel)., vol. 15, no. 2, 2022, doi: 10.3390/ma15020634.
R. Kumar, M. M. Mahapatra, A. K. Pradhan, A. Giri, and C. Pandey, “Experimental and numerical study on the distribution of temperature field and residual stress in a multi-pass welded tube joint of Inconel 617 alloy,” Int. J. Press. Vessel. Pip., vol. 206, 2023, doi: 10.1016/j.ijpvp.2023.105034.
I. Miturska, A. Rudawska, and V. Brunella, “Strength of Assembly Butt Joints of Plastic Pipes,” Adv. Sci. Technol. Res. J., vol. 14, no. 1, 2020, doi: 10.12913/22998624/113544.
A. Mashhuriazar, C. Hakan Gur, Z. Sajuri, and H. Omidvar, “Effects of heat input on metallurgical behavior in HAZ of multi-pass and multi-layer welded IN-939 superalloy,” J. Mater. Res. Technol., vol. 15, 2021, doi: 10.1016/j.jmrt.2021.08.113.
P. H. Tjahjanti, Iswanto, E. Widodo, and S. Pamuji, “Examination of Thermoplastic Polymers for Splicing and Bending,” Nano Hybrids Compos., vol. 38, 2023, doi: 10.4028/p-8myjhn.
I. P. A. Wibawa et al., “ANALYSIS OF TENSILE AND FLEXURAL STRENGTH OF HDPE MATERIAL JOINTS IN SHIP CONSTRUCTION,” J. Appl. Eng. Sci., vol. 21, no. 2, 2023, doi: 10.5937/jaes0-41924.
R. Rohman, A. Prasetyo, A. Abdulah, K. Karyadi, T. Thiyana, and S. Sukarman, “The Effect of Temperature on Tensile Strength of Polypropylene Plate Material Using Hot Gas Welding (HGW) Method,” J. Tek. Mesin Mech. Xplore, vol. 3, no. 1, 2022, doi: 10.36805/jtmmx.v3i1.2453.
X. Cui, L. Tian, P. Zhao, D. Wang, Y. Wang, and W. Wang, “The morphology and mechanical property of hot gas implant welding joint of polypropylene,” Mater. Lett., vol. 293, 2021, doi: 10.1016/j.matlet.2021.129729.
J. Schmid, D. F. Weißer, D. Mayer, L. Kroll, and M. H. Deckert, “Increase of the efficiency in hot gas welding by optimization of the gas flow,” Technol. Light. Struct., vol. 5, no. 1, 2022, doi: 10.21935/tls.v5i1.154.
P. Zhao, L. Tian, X. Cui, X. Xiong, D. Wang, and G. Li, “Hot gas implant welding of polypropylene via a three-dimensional porous copper implant,” Compos. Commun., vol. 25, 2021, doi: 10.1016/j.coco.2021.100761.
M. Bialaschik, V. Schöppner, M. Albrecht, and M. Gehde, “Influence of material degradation on weld seam quality in hot gas butt welding of polyamides,” Weld. World, vol. 65, no. 6, 2021, doi: 10.1007/s40194-021-01108-0.
M. Abu-Aesh, M. Taha, A. S. El-Sabbagh, and L. Dorn, “Hot-cracking susceptibility of fully austenitic stainless steel using pulsed-current gas tungsten arc-welding process,” Eng. Reports, vol. 3, no. 3, 2021, doi: 10.1002/eng2.12308.
C. Neelamegam, R. Meenakshisundaram, and V. Muthukumaran, “Process parameter optimization of hot-wire TIG welding of 10 mm thick type 316LN stainless steel plates,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 238, no. 3, 2024, doi: 10.1177/09544062231175779.
T. Dai et al., “The Toughness of High-Strength Steel Weld Metals :High weld toughness can be achieved by using an inert shielding gas during welding to reduce oxide inclusions in the weld metal,” Weld. J., vol. 101, no. 2, 2022, doi: 10.29391/2022.101.006.
D. Annamalai, J. Nampoothiri, P. K. Manikandan Rajam, and H. K. Radhakrishnan, “Optimization of Ultrasonic-Assisted TIG (UA-TIG) Welding Process Parameters for AA7075 Alloy Joints Using RSM-GA Approach,” J. Test. Eval., vol. 51, no. 5, 2023, doi: 10.1520/JTE20220445.
M. Braun et al., “Mechanical behavior of additively and conventionally manufactured 316L stainless steel plates joined by gas metal arc welding,” J. Mater. Res. Technol., vol. 24, 2023, doi: 10.1016/j.jmrt.2023.03.080.
F. B. Wadsworth et al., “A model for permeability evolution during volcanic welding,” J. Volcanol. Geotherm. Res., vol. 409, 2021, doi: 10.1016/j.jvolgeores.2020.107118.
L. Budde et al., “Influence of shielding gas coverage during laser hot-wire cladding with high carbon steel,” Int. J. Adv. Manuf. Technol., vol. 127, no. 7–8, 2023, doi: 10.1007/s00170-023-11350-z.
O. Brätz, J. Klett, T. Wolf, K. M. Henkel, H. J. Maie, and T. Hassel, “Induction Heating in Underwater Wet Welding—Thermal Input, Microstructure and Diffusible Hydrogen Content,” Materials (Basel)., vol. 15, no. 4, 2022, doi: 10.3390/ma15041417.
A. Mashhuriazar et al., “Investigating the Effects of Repair Welding on Microstructure, Mechanical Properties, and Corrosion Behavior of IN-939 Superalloy,” J. Mater. Eng. Perform., vol. 32, no. 15, 2023, doi: 10.1007/s11665-022-07596-5.
N. Suwannatee, S. Wonthaisong, M. Yamamoto, S. Shinohara, and R. Phaoniam, “Optimization of welding conditions for hot-wire GMAW with CO2 shielding on heavy-thick butt joint,” Weld. World, vol. 66, no. 4, 2022, doi: 10.1007/s40194-021-01227-8.
P. Subramani, N. Arivazhagan, S. K. Selvaraj, S. Mancin, and M. Manikandan, “Influence of hot corrosion on pulsed current gas tungsten arc weldment of aerospace-grade 80A alloy exposed to high temperature aggressive environment,” Int. J. Thermofluids, vol. 14, 2022, doi: 10.1016/j.ijft.2022.100148.
W. Zhou, A. Aprilia, and C. K. Mark, “Mechanisms of cracking in laser welding of magnesium alloy AZ91D,” Metals (Basel)., vol. 11, no. 7, 2021, doi: 10.3390/met11071127.
M. Tanaka et al., “Effect of shielding gas composition on gas metal arc welding phenomena using rare earth metal added wire,” Yosetsu Gakkai Ronbunshu/Quarterly J. Japan Weld. Soc., vol. 38, no. 4, 2021, doi: 10.2207/QJJWS.38.438.
I. Dinaharan, R. Palanivel, H. M Alswat, and M. A. Rasheed, “Effect of hot wire feed rate on microstructural evolution and mechanical strength of pure nickel tubes joined using gas tungsten arc welding,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 237, no. 11, 2023, doi: 10.1177/09544054221136530.
J. H. Lee, S. Yamashita, T. Ogura, and K. Saida, “Suppression of solidification cracking via thermal strain control in multi-beam welding,” Mater. Today Commun., vol. 24, 2020, doi: 10.1016/j.mtcomm.2020.101094.
S. Das Banik, S. Kumar, P. K. Singh, S. Bhattacharya, and M. M. Mahapatra, “Prediction of distortions and residual stresses in narrow gap weld joints prepared by hot wire GTAW and its validation with experiments,” Int. J. Press. Vessel. Pip., vol. 193, 2021, doi: 10.1016/j.ijpvp.2021.104477.
C. P. Tamil Selvan, I. Dinaharan, R. Palanivel, and K. Kalaiselvan, “Predicting the tensile strength and deducing the role of processing conditions of hot wire gas tungsten arc welded pure nickel tubes using an empirical relationship,” Int. J. Press. Vessel. Pip., vol. 188, 2020, doi: 10.1016/j.ijpvp.2020.104220.
I. S. Nefelov and N. I. Baurova, “Durability Characterization of Joints of Plastic Products Exposed to Negative Temperatures Fabricated Using Additive Technologies,” Polym. Sci. - Ser. D, vol. 14, no. 3, 2021, doi: 10.1134/S1995421221030229.



