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 Suboptimal combustion rates can reduce rocket performance and increase safety risks, 

so material and pressure analysis is critical for more efficient and safer propellants. The 

aim of this research is to understand the effect of material and pressure combinations on 

propellant combustion speed in order to develop more efficient and safer propellants. 

This research uses propellant, nickel wire and lead, as well as measuring instruments, 

compressors, cameras and electricity sources. A comparative analysis of propellant 

combustion speed was carried out with variations in AP/Al/Epoxy materials and 

pressure variations. The research results show that the higher the pressure, the greater 

the combustion speed. Based on the research results, the relationship between the air 

pressure provided is directly proportional to the combustion speed and the propellant 

mass flow rate. The greater the pressure applied, the higher the combustion speed and 

propellant mass flow rate. The best performance is found in propellant B with a value 

of n = 0.44. A constant value close to 0 (zero) indicates a much more sensitive level of 

propellant sensitivity. The resulting mass flow rate at an initial atmospheric pressure of 

0.332 gr/s and at an initial pressure of 5 bar is 0.791 gr/s. 
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1. INTRODUCTION 

A non-optimal combustion speed can result in less than 

optimal rocket performance and potential safety risks. 

Therefore, an in-depth analysis of how material 

combinations and pressure variations can affect 

combustion speed is essential for the development of more 

efficient and safer propellants.  

Composite solid propellant (CSP) is the main energy source 

for rocket propulsion in military and space applications [1], 

[2], [3]. CSP is a recommended propellant in the field of 

solid rocket propulsion for tactical missiles and launch 

vehicle propulsion. CSP has slightly lower performance 

than complex liquid rocket engines, but CSP has the 

advantages of simple, reliable and 

chemically/mechanically stable design, high energy 

density, high reliability, good performance characteristics, 

and can be stored for a long time. long term [4], [5]. 

Modern rockets and missiles widely use composite 

propellants that essentially consist of an oxygen-rich solid 

oxidizer (65%–90%) that provides oxygen (O2) for 

oxidation purposes, an organic polymer that serves as a 

binder and a flammable gas (8%– 15%), and metal fuel 

(10%–20%) which produces additional heat energy to 

improve propellant performance [6], [7]. The propellant 

system consists of ∼70% oxidizing particles (ammonium 

perchlorate, AP) and ∼20% fuel particles (Aluminum, Al) 

embedded in 10 % hydroxyl terminated polybutadiene 

(HTPB) binder [8], [9]. 

Ammonium perchlorate (NH4ClO4, AP) has a heat release 

of 500–800 J/g and a positive oxygen balance of 34% 

which is considered as the main solid oxidizer because it 

has a high composite propellant mass (more than 70%) 

[10]. AP is very important for increasing the efficiency of 

energy release reactions (decomposition) and combustion 

[11], [12]. The properties of propellant composites are 

significantly influenced by AP decomposition [13]. 

AP and HTPB are the most widely used combination of 

oxidizer and binder in CSP [14]. At high temperatures far 

above the transition temperature of solid glass propellant. 

The higher the loading speed, the greater the breaking 

strain. At high temperatures, the entropy of the polymer 

chain cracks, causing damage to the HTPB binder [15], 

[16]. So innovation is needed to replace HTPB as a binder 

in the manufacture of solid propellant. 

In the formation of CSP, heterogeneous propellant grains 

are formed when the oxidizer and fuel crystals are firmly 

bound by a synthetic polymer (or plastic) binding matrix, 

such as epoxy [17]. Epoxy resin is a polymer adhesive 

material. Epoxy-based composite materials play an 

important role as a binder [18], [19]. Epoxy has strong 
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bonds, stable chemical structure, high mechanical strength, 

excellent adhesion, high content of C and H elements [20], 

[21], [22].  

In CSP systems, aluminum has an important role in 

condensed combustion systems. Aluminum powder (5-20 

µm) is usually added to solid propellants to increase the 

specific impulse of the engine due to its high energy 

density. Aluminum is an energetic material that is suitable 

for solid propellant applications because of its abundant 

availability, low cost, low oxygen consumption, and strong 

exothermic oxidation [23].  

The characteristics of aluminum metal fuel with a high 

exothermic heat of combustion (7.4 kcal/g) and excellent 

thermal conductivity values can potentially increase the 

combustion rate [24], [25]. This shows that the AP/Al 

combustion rate produced is very high. Aluminum particles 

are able to react not only with free oxygen resulting from 

the decomposition of oxidizers but are also able to react 

with inert decomposition gas products  

and add more heat to the combustion process [26], [27]. 

Based on the background description that has been 

explained, in this study a comparative analysis of propellant 

combustion speed was carried out with variations in 

AP/Al/Epoxy materials and pressure variations. The best 

performance produced is a propellant composition that has 

a fast combustion rate and high pressure. 

 

2. RESEARCH SIGNIFICANCE 

The contribution of this research is in developing more 

efficient and safer propellants by analyzing material 

variations (ammonium perchlorate/aluminum/epoxy) and 

pressure on propellant combustion speed. Suboptimal 

combustion rates can reduce rocket performance and 

increase safety risks, so this research is important for 

producing better propellants in military and aerospace 

applications. Through comparative analysis of material and 

pressure variations, this research provides deep insight into 

the relationship between pressure and combustion rate, 

which can be used to optimize future propellant designs, 

improve energy efficiency, and ensure operational safety of 

rockets. 

 

3. RESEARCH METHODS 

The materials used in this research were propellant, nickel 

wire and tin. The tools used in this research are propellant 

velocity measuring instruments, compressors, cameras and 

electric current sources. 

Preparation of tools and materials used in the process of 

making test samples, starting with making propellant 

consisting of ammonium perchlorate, aluminum powder, 

epoxy, stirring tools and others. As well as weighing 

ingredients according to percentages. The percentage 

composition of the propellant is shown in Table 1. 

 

 

Table 1. Propellant Composition Planning 

No Composition 

Total mass of propellant 

Percentage 

 

Ammonium Perchlorate Aluminum Epoxy 

grams % grams % grams % grams 

1 A 50 56 28 16 8 28 14 

2 B 50 54 27 20 10 26 13 

3 C 50 52 26 24 12 24 12 

The process of making AP/Al/Epoxy solid propellant is by 

adding the epoxy material into the stirrer until it is evenly 

distributed, adding the Aluminum Powder into the stirrer, 

then stirring the mixture until it is even, adding the 

Ammonium Perchlorate with the epoxy mixture. After the 

mixture is even, put it in the mold until it dries. After the 

propellant dries. can be taken from the mold. Next is the 

process of forming the test sample, by cutting the propellant 

according to the size of the sample to be tested, namely 3 

cm long, 0.5 cm wide and 0.5 cm high. Propellant's rapid 

creep experimental setup is shown in Figure 1. 

 

 
Fig. 1. Experimental setup 

 

The first steps of the test procedure are preparing the tools 

and materials used in the test, installing and placing the 

propellant which has nickel and tin wire installed in the 

combustion place. The second step, install the nickel and 

tin wire on the kiln holder. The third step, close the test 

tube, then lower the cover and tighten it. The fourth step, 
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provides air pressure from the compressor according to the 

pressure variation that will be tested, namely atmospheric 

pressure, pressure 1 – 5 bar. The fifth step, connect the 

hardware component cables to the power source. Sixth step 

Activate the igniter combustion switch in the software. In 

its application, the propellant combustion speed 

measurement tool is used to determine the combustion 

speed when a certain pressure is applied. If combustion has 

occurred, the first lead that is passed will activate the timer 

to start the combustion time. After the burning hits the 

second tin, the burning time will automatically stop. While 

changes in pressure over time are used by the camera to 

obtain video data. Based on data from video analysis of 

pressure changes over time, data on the speed of 

combustion was obtained. 

 

4. RESULT AND DISCUSSION 

Data on propellant testing results with variations in material 

and pressure over time are shown in Figures 9, 10 and 11. 

 
Fig. 9. Propellant A combustion time and pressure. 

 

Pressure changes from burning propellant A during 

combustion time (Figure 9). We can see that the pressure 

increase during combustion tends to be linear to the 

propellant combustion speed. Apart from that, at 

atmospheric pressure it produces a propagation speed of 

0.1182 cm/s as the lowest value and at an initial pressure of 

5 bar the propagation speed is 0.3015 cm/s as the highest 

value. This is possible because the propellant is mixed 

homogeneously, there are no voids in the propellant. So that 

when the combustion takes place, the combustion takes 

place in a cigarrette burning manner or evenly. Meanwhile, 

the calculation using the regression approach for propellant 

A produces a value of n (pressure constant) of 0.53, which 

indicates that the propellant is good because it is still within 

the combustion speed index of 0.3 – 0.6. 

 

 
Fig.10. Propellant B combustion time and pressure. 

 

In propellant B shown in Figure 10, there is a significant 

pressure jump at the end of combustion at a pressure of 3 

bar. With the lowest propagation speed value of 0.1300 

cm/s at an initial pressure of 1 bar, and the highest 0.2929 

cm/s at an initial pressure of 5 bar. Then for the value n = 

0.44. A pressure jump can occur due to several things, one 

of which could be because there is a cavity in the propellant 

sample. So that when combustion hits the cavity, the 

combustion area becomes larger, the pressure becomes 

higher and the speed of combustion also increases. 

 

 
Fig. 11. Propellant C Combustion Time and Pressure. 

In propellant C shown in Figure 11, there is also a pressure 

jump at the initial combustion pressure of 2 bar, 3 bar and 

4 bar. With the lowest propagation speed value of 0.1348 

cm/s at an initial pressure of 0, and the highest 0.2829 cm/s 

at an initial pressure of 5 bar. Then for the value n = 0.47. 

The occurrence of pressure jumps in several samples shows 

that the composition contains porosity.The results of the 

combustion speed of each propellant can be seen in Figure 

12. 
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Fig.12. The Correlation of the speed of propagation of ABC 

Propellant against pressure variations. 

 

Figure 12 and Figure 13 show that for propellant A, the 

lowest propellant combustion mass flow rate was 0.301 gr/s 

at atmospheric pressure and the highest was 0.797 gr/s at 

an initial pressure of 5 bar. The combustion mass flow rate 

that occurs tends to be the same at initial pressures of 2 bar 

and 3 bar. This is possible because the density or level of 

density is influenced by different cross-sectional areas. The 

results of the propellant combustion mass flow rate can be 

seen in Figure 13. 

 

 
Fig. 13. Mass flow rate of propellant ABC against pressure. 

 

Figures 12 and 13, propellant B obtained the lowest 

propellant combustion mass flow rate of 0.332 gr/s at 

atmospheric pressure and the highest 0.791 gr/s at an initial 

pressure of 5 bar. There was a decrease in the combustion 

flow rate at an initial pressure of 2 bar. This is because other 

factors such as density level, cross-sectional area, and the 

resulting combustion speed tend to be different. 

Judging from Figures 12 and 13, propellant C obtained the 

lowest propellant combustion mass flow rate of 0.405 gr/s 

at atmospheric pressure and the highest 0.694 gr/s at an 

initial pressure of 5 bar. The higher the density level, the 

greater the resulting mass flow rate. And another 

influencing factor is the occurrence of porosity. 

The burning rate of solid rocket propellant is expressed as 

a regression of the burning surface [28], [29]. The 

combustion rate can be increased by increasing the 

combustion temperature and/or combustion pressure [30], 

[31]. Combustion temperature and pressure can be 

controlled by integrating various potential AP oxidizers 

and/or aluminum active metal fuels. These energetic 

additives have the potential to induce exothermic reactions 

in the induction zone, reducing its thickness, and thereby 

increasing the combustion rate [32]. 

To determine the internal pressure of a rocket motor, it is 

necessary to determine the geometry of the propellant core 

because the internal pressure of the motor depends on the 

combustion area. When solid fuel burns, the combustion 

area changes. Therefore, to estimate the pressure-time of 

the motor, each combustion step is needed in the 

combustion area. The analysis carried out to determine the 

burning area at each stage of combustion is called burn 

back analysis [33]. 

Star-shaped structures are generally preferred to represent 

solid-fuel rocket motor cores although other geometric 

shapes exist. In star-shaped solid fuels, the burning surface 

area remains constant at approximately ±15% during 

combustion. The remaining burning surface area helps the 

burning rate run smoothly, allowing the rocket to fly more 

stably. 

Star-shaped propellant [34]. 

The burning rate of solid rocket propellant is a function of 

the propellant content. The propellant mixture content 

directly affects the combustion rate. Factors that can change 

the burning rate are the addition of a catalyst or burning 

rate, reducing the particle size of the oxidizer, increasing 

the percentage of the oxidizing agent, increasing the 

amount of binder or oxidizing agent to increase the burning 

rate, and adding metal rods or metal fibers to the fuel [35].  

The influence of motor production conditions on the 

combustion rate, apart from the chemical composition of 

the solid propellant, is the combustion chamber pressure, 

the initial temperature of the propellant before combustion, 

the temperature of the burning gas, the velocity of the gas 

flow parallel to the combustion surface, the movement of 

the motor (acceleration and regression of turbulence in the 

core), and the rate of Combustion of solid rocket propellant 

behaves differently depending on various factors [36].  

Increasing the pressure in the combustion chamber is one 

of the most important factors that increases the combustion 

rate. As shown in Figure 16, as the combustion chamber 

pressure increases, the flame profile varies; the size of the 

fire decreases and burns faster [37]. The combustion 

behavior and rate of solid rocket propellants vary at 

different pressures. The combustion rate increases as the 

combustion chamber pressure increases [38]. 

 

5. CONCLUSION 

Based on the results of the research, the relationship 

between the air pressure provided is directly proportional 

to the combustion speed and the mass flow rate of the 

propellant. The greater the pressure applied, the higher the 
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combustion speed and propellant mass flow rate. The best 

performance is found in propellant B with a value of n = 

0.44. A constant value close to 0 (zero) indicates a much 

more sensitive level of propellant sensitivity. The resulting 

mass flow rate at an initial atmospheric pressure of 0.332 

gr/s and at an initial pressure of 5 bar is 0.791 gr/s. 
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