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Suboptimal combustion rates can reduce rocket performance and increase safety risks,
so material and pressure analysis is critical for more efficient and safer propellants. The
aim of this research is to understand the effect of material and pressure combinations on
propellant combustion speed in order to develop more efficient and safer propellants.
This research uses propellant, nickel wire and lead, as well as measuring instruments,
compressors, cameras and electricity sources. A comparative analysis of propellant
combustion speed was carried out with variations in AP/Al/Epoxy materials and
pressure variations. The research results show that the higher the pressure, the greater
the combustion speed. Based on the research results, the relationship between the air
pressure provided is directly proportional to the combustion speed and the propellant
mass flow rate. The greater the pressure applied, the higher the combustion speed and
propellant mass flow rate. The best performance is found in propellant B with a value
of n = 0.44. A constant value close to 0 (zero) indicates a much more sensitive level of
propellant sensitivity. The resulting mass flow rate at an initial atmospheric pressure of

0.332 gr/s and at an initial pressure of 5 bar is 0.791 gr/s.
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1. INTRODUCTION

A non-optimal combustion speed can result in less than
optimal rocket performance and potential safety risks.
Therefore, an in-depth analysis of how material
combinations and pressure variations can affect
combustion speed is essential for the development of more
efficient and safer propellants.

Composite solid propellant (CSP) is the main energy source
for rocket propulsion in military and space applications [1],
[2], [3]. CSP is a recommended propellant in the field of
solid rocket propulsion for tactical missiles and launch
vehicle propulsion. CSP has slightly lower performance
than complex liquid rocket engines, but CSP has the
advantages of simple, reliable and
chemically/mechanically stable design, high energy
density, high reliability, good performance characteristics,
and can be stored for a long time. long term [4], [5].
Modern rockets and missiles widely use composite
propellants that essentially consist of an oxygen-rich solid
oxidizer (65%-90%) that provides oxygen (0O2) for
oxidation purposes, an organic polymer that serves as a
binder and a flammable gas (8%— 15%), and metal fuel
(10%-20%) which produces additional heat energy to
improve propellant performance [6], [7]. The propellant
system consists of ~70% oxidizing particles (ammonium

perchlorate, AP) and ~20% fuel particles (Aluminum, Al)
embedded in 10 % hydroxyl terminated polybutadiene
(HTPB) binder [8], [9].

Ammonium perchlorate (NH4CIO4, AP) has a heat release
of 500-800 J/g and a positive oxygen balance of 34%
which is considered as the main solid oxidizer because it
has a high composite propellant mass (more than 70%)
[10]. AP is very important for increasing the efficiency of
energy release reactions (decomposition) and combustion
[11], [12]. The properties of propellant composites are
significantly influenced by AP decomposition [13].

AP and HTPB are the most widely used combination of
oxidizer and binder in CSP [14]. At high temperatures far
above the transition temperature of solid glass propellant.
The higher the loading speed, the greater the breaking
strain. At high temperatures, the entropy of the polymer
chain cracks, causing damage to the HTPB binder [15],
[16]. So innovation is needed to replace HTPB as a binder
in the manufacture of solid propellant.

In the formation of CSP, heterogeneous propellant grains
are formed when the oxidizer and fuel crystals are firmly
bound by a synthetic polymer (or plastic) binding matrix,
such as epoxy [17]. Epoxy resin is a polymer adhesive
material. Epoxy-based composite materials play an
important role as a binder [18], [19]. Epoxy has strong
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bonds, stable chemical structure, high mechanical strength,
excellent adhesion, high content of C and H elements [20],
[21], [22].

In CSP systems, aluminum has an important role in
condensed combustion systems. Aluminum powder (5-20
um) is usually added to solid propellants to increase the
specific impulse of the engine due to its high energy
density. Aluminum is an energetic material that is suitable
for solid propellant applications because of its abundant
availability, low cost, low oxygen consumption, and strong
exothermic oxidation [23].

The characteristics of aluminum metal fuel with a high
exothermic heat of combustion (7.4 kcal/g) and excellent
thermal conductivity values can potentially increase the
combustion rate [24], [25]. This shows that the AP/AI
combustion rate produced is very high. Aluminum particles
are able to react not only with free oxygen resulting from
the decomposition of oxidizers but are also able to react
with inert decomposition gas products

and add more heat to the combustion process [26], [27].
Based on the background description that has been
explained, in this study a comparative analysis of propellant
combustion speed was carried out with variations in
AP/Al/Epoxy materials and pressure variations. The best
performance produced is a propellant composition that has
a fast combustion rate and high pressure.

2. RESEARCH SIGNIFICANCE

The contribution of this research is in developing more
efficient and safer propellants by analyzing material
variations (ammonium perchlorate/aluminum/epoxy) and
pressure on propellant combustion speed. Suboptimal
combustion rates can reduce rocket performance and
increase safety risks, so this research is important for
producing better propellants in military and aerospace
applications. Through comparative analysis of material and
pressure variations, this research provides deep insight into
the relationship between pressure and combustion rate,
which can be used to optimize future propellant designs,
improve energy efficiency, and ensure operational safety of
rockets.

3. RESEARCH METHODS

The materials used in this research were propellant, nickel
wire and tin. The tools used in this research are propellant
velocity measuring instruments, compressors, cameras and
electric current sources.

Preparation of tools and materials used in the process of
making test samples, starting with making propellant
consisting of ammonium perchlorate, aluminum powder,
epoxy, stirring tools and others. As well as weighing
ingredients according to percentages. The percentage
composition of the propellant is shown in Table 1.

Table 1. Propellant Composition Planning

Percentage
Total mass of propellant
No | Composition Ammonium Perchlorate | Aluminum Epoxy
grams % grams % | grams | % | grams
1 A 50 56 28 16 8 28 14
2 B 50 54 27 20 10 26 13
3 C 50 52 26 24 12 24 12

The process of making AP/Al/Epoxy solid propellant is by
adding the epoxy material into the stirrer until it is evenly
distributed, adding the Aluminum Powder into the stirrer,
then stirring the mixture until it is even, adding the
Ammonium Perchlorate with the epoxy mixture. After the
mixture is even, put it in the mold until it dries. After the
propellant dries. can be taken from the mold. Next is the
process of forming the test sample, by cutting the propellant
according to the size of the sample to be tested, namely 3
cm long, 0.5 cm wide and 0.5 cm high. Propellant's rapid
creep experimental setup is shown in Figure 1.

propellant velocity measuring instrument

Propellant 4 ] “}U‘m ﬁxj

Start Button

Cable

Fig. 1. Experimental setup

The first steps of the test procedure are preparing the tools
and materials used in the test, installing and placing the
propellant which has nickel and tin wire installed in the
combustion place. The second step, install the nickel and
tin wire on the kiln holder. The third step, close the test
tube, then lower the cover and tighten it. The fourth step,
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provides air pressure from the compressor according to the
pressure variation that will be tested, namely atmospheric
pressure, pressure 1 — 5 bar. The fifth step, connect the
hardware component cables to the power source. Sixth step
Activate the igniter combustion switch in the software. In
its application, the propellant combustion speed
measurement tool is used to determine the combustion
speed when a certain pressure is applied. If combustion has
occurred, the first lead that is passed will activate the timer
to start the combustion time. After the burning hits the
second tin, the burning time will automatically stop. While
changes in pressure over time are used by the camera to
obtain video data. Based on data from video analysis of
pressure changes over time, data on the speed of
combustion was obtained.

4. RESULT AND DISCUSSION
Data on propellant testing results with variations in material
and pressure over time are shown in Figures 9, 10 and 11.

Pressure (bar)

1} o 10 ) 15 I 20
Time ()
Fig. 9. Propellant A combustion time and pressure.

Pressure changes from burning propellant A during
combustion time (Figure 9). We can see that the pressure
increase during combustion tends to be linear to the
propellant combustion speed. Apart from that, at
atmospheric pressure it produces a propagation speed of
0.1182 cm/s as the lowest value and at an initial pressure of
5 bar the propagation speed is 0.3015 cm/s as the highest
value. This is possible because the propellant is mixed
homogeneously, there are no voids in the propellant. So that
when the combustion takes place, the combustion takes
place in a cigarrette burning manner or evenly. Meanwhile,
the calculation using the regression approach for propellant
A produces a value of n (pressure constant) of 0.53, which
indicates that the propellant is good because it is still within
the combustion speed index of 0.3 — 0.6.
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Fig.10. Propellant B combustion time and pressure.

In propellant B shown in Figure 10, there is a significant
pressure jump at the end of combustion at a pressure of 3
bar. With the lowest propagation speed value of 0.1300
cm/s at an initial pressure of 1 bar, and the highest 0.2929
cm/s at an initial pressure of 5 bar. Then for the value n =
0.44. A pressure jump can occur due to several things, one
of which could be because there is a cavity in the propellant
sample. So that when combustion hits the cavity, the
combustion area becomes larger, the pressure becomes
higher and the speed of combustion also increases.
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Fig. 11. Propellant C Combustion Time and Pressure.
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In propellant C shown in Figure 11, there is also a pressure
jump at the initial combustion pressure of 2 bar, 3 bar and
4 bar. With the lowest propagation speed value of 0.1348
cm/s at an initial pressure of 0, and the highest 0.2829 cm/s
at an initial pressure of 5 bar. Then for the value n = 0.47.
The occurrence of pressure jumps in several samples shows
that the composition contains porosity.The results of the
combustion speed of each propellant can be seen in Figure
12.
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Fig.12. The Correlation of the speed of propagation of ABC
Propellant against pressure variations.

Figure 12 and Figure 13 show that for propellant A, the
lowest propellant combustion mass flow rate was 0.301 gr/s
at atmospheric pressure and the highest was 0.797 gr/s at
an initial pressure of 5 bar. The combustion mass flow rate
that occurs tends to be the same at initial pressures of 2 bar
and 3 bar. This is possible because the density or level of
density is influenced by different cross-sectional areas. The
results of the propellant combustion mass flow rate can be
seen in Figure 13.
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Fig. 13. Mass flow rate of propellant ABC against pressure.

Figures 12 and 13, propellant B obtained the lowest
propellant combustion mass flow rate of 0.332 gr/s at
atmospheric pressure and the highest 0.791 gr/s at an initial
pressure of 5 bar. There was a decrease in the combustion
flow rate at an initial pressure of 2 bar. This is because other
factors such as density level, cross-sectional area, and the
resulting combustion speed tend to be different.

Judging from Figures 12 and 13, propellant C obtained the
lowest propellant combustion mass flow rate of 0.405 gr/s
at atmospheric pressure and the highest 0.694 gr/s at an
initial pressure of 5 bar. The higher the density level, the

greater the resulting mass flow rate. And another
influencing factor is the occurrence of porosity.

The burning rate of solid rocket propellant is expressed as
a regression of the burning surface [28], [29]. The
combustion rate can be increased by increasing the
combustion temperature and/or combustion pressure [30],
[31]. Combustion temperature and pressure can be
controlled by integrating various potential AP oxidizers
and/or aluminum active metal fuels. These energetic
additives have the potential to induce exothermic reactions
in the induction zone, reducing its thickness, and thereby
increasing the combustion rate [32].

To determine the internal pressure of a rocket motor, it is
necessary to determine the geometry of the propellant core
because the internal pressure of the motor depends on the
combustion area. When solid fuel burns, the combustion
area changes. Therefore, to estimate the pressure-time of
the motor, each combustion step is needed in the
combustion area. The analysis carried out to determine the
burning area at each stage of combustion is called burn
back analysis [33].

Star-shaped structures are generally preferred to represent
solid-fuel rocket motor cores although other geometric
shapes exist. In star-shaped solid fuels, the burning surface
area remains constant at approximately +15% during
combustion. The remaining burning surface area helps the
burning rate run smoothly, allowing the rocket to fly more
stably.

Star-shaped propellant [34].

The burning rate of solid rocket propellant is a function of
the propellant content. The propellant mixture content
directly affects the combustion rate. Factors that can change
the burning rate are the addition of a catalyst or burning
rate, reducing the particle size of the oxidizer, increasing
the percentage of the oxidizing agent, increasing the
amount of binder or oxidizing agent to increase the burning
rate, and adding metal rods or metal fibers to the fuel [35].
The influence of motor production conditions on the
combustion rate, apart from the chemical composition of
the solid propellant, is the combustion chamber pressure,
the initial temperature of the propellant before combustion,
the temperature of the burning gas, the velocity of the gas
flow parallel to the combustion surface, the movement of
the motor (acceleration and regression of turbulence in the
core), and the rate of Combustion of solid rocket propellant
behaves differently depending on various factors [36].
Increasing the pressure in the combustion chamber is one
of the most important factors that increases the combustion
rate. As shown in Figure 16, as the combustion chamber
pressure increases, the flame profile varies; the size of the
fire decreases and burns faster [37]. The combustion
behavior and rate of solid rocket propellants vary at
different pressures. The combustion rate increases as the
combustion chamber pressure increases [38].

5. CONCLUSION

Based on the results of the research, the relationship
between the air pressure provided is directly proportional
to the combustion speed and the mass flow rate of the
propellant. The greater the pressure applied, the higher the
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combustion speed and propellant mass flow rate. The best
performance is found in propellant B with a value of n =
0.44. A constant value close to 0 (zero) indicates a much
more sensitive level of propellant sensitivity. The resulting
mass flow rate at an initial atmospheric pressure of 0.332
gr/s and at an initial pressure of 5 bar is 0.791 gr/s.
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