The Buck-boost converter in photovoltaics for battery chargers
DOI:
https://doi.org/10.70822/journalofevrmata.vi.26Keywords:
Photovoltaic, Buck-Boost Converter2 Switch, ATmega16 MicrocontrollerAbstract
Alternative energy is energy that is widely developed by scientists nowadays, especially in terms of electricity. Currently, the alternative energies that are widely developed are wind power, hydropower, geothermal energy, and solar power. Solar power is a promising energy source in Indonesia. The utilization of solar energy requires photovoltaics to convert solar energy into electricity, while for charging a12V/7Ah battery, a buck-boost converter is used. However, the use of the buck-boost converter still has some shortcomings, such as reversed voltage polarity. To address this issue, it is proposed to use a2-switch buck-boost converter. With the2-switch buck-boost converter, it is capable of charging the battery with an initial voltage of19V, which is then reduced to14.25V to charge the battery with an initial voltage of10.08V to11.16V within60 minutes, maintaining the same polarity as the initial input and with a maximum current from the photovoltaic of3.48A. In this thesis, Atmega16 is used to control the2-switch buck-boost converter and a50Wp photovoltaic with a maximum voltage of 21V and a current of 3.48A..
References
Jean-Louis Bal. Solar Photovoltaic Energy. The Institution of Engineering and Technology, 2010.
Mark Hankins. Stand-Alone Solar Electric Systems. Washington, DC, London, 2010.
E. Koutroulis and K. Kalaitzakis .Novel battery charging regulation system for photovoltaic applications. IEE Proc.-Electr. Power Appl., Vol. 151, No. 2, pp. 191-197, March 2004.
M. G. Villalva, J. R. Gazoli, E. Ruppert F. Modeling and Circuit-Based Simulation of Photovoltaic Arrays. Brazilian Journal of Power Electronics, Vol. 14, No. 1, pp. 35-45, 2009.
PVsyst V.5.55 Software. [6] www.edenonline.com.br/downloads/GETPOWER/GP12-100.pdf.
Cécile HAMON. Etude De Regulateurs Lineaires Et A Decoupage Integres: Applicationa A La Telephonie Portable. PhD thesis. University of Grenoble 1, France, 2001.
SPIROV Dimitar, LAZAROV Vladimir, ROYE Daniel, ZARKOV Zahari, MANSOURI Omar. Modelisation Des Convertisseurs Statiques Dc-Dc Pour Des Applications Dans Les Energies Renouvelables En Utilisant Matlab/Simulink®. Conference EF 2009, UTC Compiègne, 24- 25 Septembre 2009.
Leonardo Callegaro, Mihai Ciobotaru, Daniel J. Pagano, Eugenio Turano, and John E. Fletcher. A Simple Smooth Transition Technique for the Non-Inverting Buck-Boost Converter. IEEE Transactions on Power Electronics, Vol. 33, No. 6, June 2018.
Alaa HIJAZI. Modélisation électrothermique, commande et dimensionnement d’un système de stockage d’énergie par supercondensateurs avec prise en compte de son vieillissement : application à la récupération de l’énergie de freinage d’un trolleybus. PhD thesis. University of claude bernard, lyon 1, France 2010.
Phatiphat Thounthong. Control of Fuel Cell/Battery Hybrid Source for Electric Vehicle Applications. ECTI Transactions on Electrical Eng., Electronics, and Communications Vol.5, No.2, August 2007.
Nabil Karami, Nazih Moubayed, Rachid Outbib. Analysis and implementation of an adaptative PV based battery floating charger. Solar Energy, Vol. 86, Issue 9, pp. 2383-2396, September 2012.
Nabil Karami, Nazih Moubayed and Rachid Outbib. Analysis of an irradiance adaptative PV based battery floating charger. IEEE, 37th Photovoltaic Specialists Conference (PVSC), 2011, 19-24 June 2011.
Z. H. Zhang, “Power management of hybrid photovoltaicfuel cell power systems,” IEEE Power Engineering Society General Meeting, Montreal(Canada), June.2006, PP. 1-6.
Z. J. Qian, O. Abdel-Rahman, H. AI-Atrash, and I. Batarseh, “Modeling and Control of Three-Port DC/DC Converter Interface for Satellite Applications,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 637-649, Oct. 2010.
H. Wu, P. Xu, H. Hu, Z. Zhou, and Y. Xing, “Multiport converters based on integration of full-bridge and bidirectional DC-DC topologies for renewable generation systems,” IEEE Trans. Ind. Electron., vol.61, no. 2, pp. 856-869, Mar. 2014.
J. L. Duarte, M. Hendrix, and M. G. Simoes, “Three-port bidirectional converter for hybrid fuel cell systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480-487, Mar. 2007. [5] H. Krishnaswami, and N. Mohan, “Three-port seriesresonant dc-dc converter to interface renewable energy sources with bidirectional load and energy storage ports,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2289- 2297, Aug. 2009.
H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Three-port triple-half-bridge bidirectional converter with zero-voltage switching,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 782-792, Mar. 2008.
H. Wu, K. Sun, R. Chen, H. Hu, and Y. Xing, “Full-Bridge Three-port Converters with wide input voltage range for renewable power systems,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3965-3974, Feb. 2012.
C. Onwuchekwa, and A. Kwasinski, “A modified-timesharing switching technique for multiple-input dc-dc converters,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4492-4502, Dec. 2012.
B. G. Dobbs, and P. L. Chapman, “A multiple-input DCDC converter topology,” IEEE Trans. Power Electron. Lett., vol. 1, no. 1, pp. 6-9, Mar. 2003.
R. J. Wai, C. Y. Lin, L. W. Liu, and Y. R. Chang, “Highefficiency single-stage bidirectional converter with multiinput power sources,” IET Elect. Power Appl., vol. 1, no. 5, pp. 763-777, Sep. 2007.
L. W. Zhou, B. X. Zhu, and Q. M. Luo, “High step-up converter with capacity of multiple input,” IET Power Electron., vol. 5, no. 5, pp. 524-531, May. 2012.
M. Marchesoni, and C. Vacca, “New dc-dc converter for energy storage system interfacing in fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 301-308, Jan. 2007.
L. J. Chien, C. C. Chen, J. F. Chen, and Y. P. Hsieh, “Novel three-port converter with high-voltage gain,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 3693-4703, Sep. 2014.
K. Tomas-manez, A. Alexander, Z. Zhang, Z. W. Ouyang, and T. Franke, “High efficiency non-isolated three port DC-DC converter for PV-battery systems,” IEEE 8th International Power Electronics and Motion Control Conference(IPEMC-ECCE Asia), Hefei(China), May, 2016.
W.Wu, N. pongratananukul, W. Qiu, K. Rustomet, T. kasparis, and I. Batarseh, “Dsp-based multiple peak power tracking for expandable power system,” IEEE Appl. Power Electron. Conf., Miami(USA), Feb, 2003, vol. 1, pp. 525- 530.
N. Yang, X. Zhang, and G. Li, “State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting,” Electrochimica Acta, vol. 151, pp. 63-71, Jan, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 imam saukani, Eko Nuraini, Agus Sukoco Heru Sumarno, Rina Tri Turani Saptawati, Imanur Islahunufus, Fi Imanur Sifaunnufus Ms

This work is licensed under a Creative Commons Attribution 4.0 International License.